Effects of salicylic acid on germination of Cyclobalanopsis glauca seeds under NaHCO3 stress in Karst area of northwest Guangxi

DENG Ping, ZHAO Ying, WANG Xia, CHEN Qiuyou, WU Min

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2021, Vol. 45 ›› Issue (4) : 114-122.

PDF(1888 KB)
PDF(1888 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2021, Vol. 45 ›› Issue (4) : 114-122. DOI: 10.12302/j.issn.1000-2006.202008030

Effects of salicylic acid on germination of Cyclobalanopsis glauca seeds under NaHCO3 stress in Karst area of northwest Guangxi

Author information +
History +

Abstract

【Objective】This study aimed to alleviate NaHCO3 stress in Cyclobalanopsis glauca by investigating the effects of exogenous application of salicylic acid (SA) on the seed germination and physiological characteristics, under bicarbonate stress. 【Method】Changes in germination rates and indexes, vigor indexes, salt tolerance indexes, relative salt damage rates, malondialdehyde (MDA) content, antioxidant superoxide dismutase (SOD), peroxidase (POD) and cata-lase (CAT) activities as well as osmotic adjustment substances agents (proline, soluble sugar and soluble protein) content were assessed in C. glauca seeds under NaHCO3 (0, 24, 48, 72, 96, 120 and 144 mmol/L) stress and exogenous application of salicylic acid (SA: 0 and 0.50 mmol/L) treatment. 【Result】①Germination parameters and salt tole-rance were lower, and salt damage rates were significantly higher under NaHCO3 stress, without SA, in C. glauca seeds compared to those of the control. However, seeds had higher germination parameters, a higher salt tolerance index, and lower relative salt damage rates under NaHCO3 stress with SA compared to those without SA. The seed germination parameters and a salt tolerance index were always higher under 0-72 mmol/L NaHCO3 stress with SA treatment compared with the control group. The germination parameters and a salt tolerance index were maximal, and the relative salt damage rate was minimal under 72 mmol/L NaHCO3 stress with 0.50 mmol/L of SA treatment. ②The POD and CAT activities of seeds without SA initially increased, then decreased with increasing NaHCO3 concentrations, and SOD activity was significantly lower than that of the control group, whereas the MDA content rapidly increased. Antioxidant enzyme activities and MDA contents were significantly higher and lower, respectively, under NaHCO3 stress with, than without SA. The activities of SOD and POD were maximal in 72 mmol/L of NaHCO3 with 0.50 mmol/L of SA. ③The contents of osmotic adjustment agents were high under NaHCO3 stress without SA, and increased under NaHCO3 stress with SA compared with the control. The contents of osmotic adjustment agents were maximal under 72 mmol/L of NaHCO3 with 0.50 mmol/L of SA.【Conclusion】 The effects of 72 mmol/L NaHCO3 stress on C. glauca seeds sowed and bred in the Karst areas were alleviated after immersion in 0.50 mmol/L exogenous SA.

Key words

Cyclobalanopsis glauca / seed germination / salicylic acid / NaHCO3 / Karst area

Cite this article

Download Citations
DENG Ping , ZHAO Ying , WANG Xia , et al . Effects of salicylic acid on germination of Cyclobalanopsis glauca seeds under NaHCO3 stress in Karst area of northwest Guangxi[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2021, 45(4): 114-122 https://doi.org/10.12302/j.issn.1000-2006.202008030

References

[1]
郭柯, 刘长成, 董鸣. 我国西南喀斯特植物生态适应性与石漠化治理[J]. 植物生态学报, 2011, 35(10):991-999.
Abstract
我国西南喀斯特地区生态脆弱, 石漠化问题严重, 植被恢复/重建的难度极大。为此, 近年来开展了许多基础性研究, 以求为石漠化治理提供科技支撑。该文概略介绍了该地区喀斯特生境的特点, 回顾和评述了喀斯特生境中植物适应性、植物种群、植物群落和生态系统生态学方面取得的主要研究进展, 并结合石漠化综合治理的现状, 提出了喀斯特植物生态学研究的几点期望。
GUO K, LIU C C, DONG M. Ecological adaptation of plants and control of rocky-desertification on Karst region of southwest China[J]. Chin J Plant Ecol, 2011, 35(10):991-999.DOI: 10.3724/SP.J.1258.2011.00991.
[2]
王德炉, 喻理飞. 喀斯特环境生态脆弱性数量评价[J]. 南京林业大学学报(自然科学版), 2005, 29(6):23-26.
WANG D L, YU L F. The quantitative assessment of ecological frangibility in Karst areas[J]. J Nanjing For Univ (Nat Sci Ed), 2005, 49(6):23-26. DOI: 10.3969/j.issn.1000-2006.2005.06.006.
[3]
吴沿友, 邢德科, 刘莹. 植物利用碳酸氢根离子的特征分析[J]. 地球与环境, 2011, 39(2):273-277.
WU Y Y, XING D K, LIU Y. The characteristics of bicarbonate used by plants[J]. Earth Environ, 2011, 39(2):273-277.DOI: 10.14050/j.cnki.1672-9250.2011.02.022.
[4]
MUNNS R, TESTER M. Mechanisms of salinity tolerance[J]. Annu Rev Plant Biol, 2008, 59:651-681.DOI: 10.1146/annurev.arplant.59.032607.092911.
[5]
FARIDUDDIN Q, KHAN T A, YUSUF M, et al. Ameliorative role of salicylic acid and spermidine in the presence of excess salt in Lycopersicon esculentum[J]. Photosynthetica, 2018, 56(3):750-762.DOI: 10.1007/s11099-017-0727-y.
[6]
ALI E A, MAHMOUD A M. Effect of foliar spray by different salicylic acid and zinc concentrations on seed yield and yield components of mungbean in sandy soil[J]. Asian J Crop Sci, 2012, 5(1):33-40.DOI: 10.3923/ajcs.2013.33.40.
[7]
HAYAT Q, HAYAT S, IRFAN M, et al. Effect of exogenous salicylic acid under changing environment: a review[J]. Environ Exp Bot, 2010, 68(1):14-25.DOI: 10.1016/j.envexpbot.2009.08.005.
[8]
HAO L, ZHAO Y, JIN D D, et al. Salicylic acid-altering Arabidopsis mutants response to salt stress[J]. Plant Soil, 2012, 354(1/2):81-95.DOI: 10.1007/s11104-011-1046-x.
[9]
NIMIR N E A, LU S Y, ZHOU G S, et al. Comparative effects of gibberellic acid,kinetin and salicylic acid on emergence, seedling growth and the antioxidant defence system of sweet sorghum (Sorghum bicolor) under salinity and temperature stresses[J]. Crop Pasture Sci, 2015, 66(2):145.DOI: 10.1071/cp14141.
[10]
ASADI M, HEIDARI M A, KAZEMI M, et al. Salicylic acid induced changes in some physiological parameters in chickpea (Cicer arietinum L.) under salt stress[J]. Int J Agr Tech, 2013, 9(2):311-316.
[11]
BAGHERI M Z. The effect of maize priming on germination chara-cteristics,catalase and peroxidase enzyme activity,and total protein content under salt stress[J]. Int J Biosci, 2014, 4(2):113-119.DOI: 10.12692/ijb/4.2.113-119.
[12]
YADAV V, SINGH H, SINGH A, et al. Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress in maize (Zea mays L.) grown under cinnamic acid stress[J]. Russ Agric Sci, 2018, 44(1):9-17.DOI: 10.3103/S1068367418010202.
[13]
王玉萍, 董雯, 张鑫, 等. 水杨酸对盐胁迫下花椰菜种子萌发及幼苗生理特性的影响[J]. 草业学报, 2012, 21(1):213-219.
WANG Y P, DONG W, ZHANG X, et al. Effects of salicylic acid on seed germination and physiological characters of cauliflower seedlings under salt stress[J]. Acta Prata culturae Sin, 2012, 21(1):213-219.
[14]
张凤银, 陈禅友, 胡志辉, 等. 外源水杨酸对盐胁迫下菜豆种子萌发和幼苗生理特性的影响[J]. 东北农业大学学报, 2013, 44(10):39-43.
ZHANG F Y, CHEN C Y, HU Z H, et al. Effect of exogenous salicylic acid on seed germination and seedling physiological characteristics of kidney bean (Phaseolus vulgaris L.)under salt stress[J]. J Northeast Agric Univ, 2013, 44(10):39-43.DOI: 10.19720/j.cnki.1005-9369.2013.10.008.
[15]
李润枝, 靳晴, 李召虎, 等. 水杨酸提高甘草种子萌发和幼苗生长对盐胁迫耐性的效应[J]. 作物学报, 2020, 46(11):1810-1816.
LI R Z, JIN Q, LI Z H, et al. Salicylic acid improved salinity tolerance of Glycyrrhiza uralensis Fisch during seed germination and seedling growth stages[J]. Acta Agron Sin, 2020, 46(11):1810-1816.DOI: 10.3724/SP.J.1006.2020.04080.
[16]
曹栋栋, 陈珊宇, 秦叶波, 等. 水杨酸调控盐胁迫下羽衣甘蓝种子萌发的机理[J]. 植物学报, 2020, 55(1):49-61.
Abstract
盐胁迫是植物种子萌发与植株生长的重要限制因子。以羽衣甘蓝(Brassica oleracea var. acephala)名古屋为材料, 研究不同盐分对其种子萌发的影响, 探索水杨酸(SA)及其合成抑制剂氨基茚磷酸(AIP)处理对羽衣甘蓝种子萌发的调控效应。实验结果表明, 150与200 mmol·L <sup>-1</sup> NaCl处理后的羽衣甘蓝种子活力显著降低。盐胁迫显著降低种子的吸水速率、种子活力与幼苗质量, 降低苯丙氨酸裂解酶活性与内源SA含量, 提高过氧化氢(H<sub>2</sub>O<sub>2</sub>)与超氧阴离子(O<sub>2</sub> <sup>-.</sup>)含量。SA可以缓解盐胁迫对羽衣甘蓝种子活力的抑制作用, 通过促进内源SA合成, 从而提高种子吸水率与种子活力, 促进种子对K <sup>+</sup>、Mg <sup>2+</sup>的吸收, 降低Na <sup>+</sup>含量。此外, 外源施加SA能够显著增强超氧化物歧化酶和过氧化物酶活性, 降低H<sub>2</sub>O<sub>2</sub>与O<sub>2</sub> <sup>-.</sup>的积累。相反, 氨基茚磷酸(AIP)处理能够增强盐胁迫对种子萌发的抑制作用, 推测这与AIP处理能够显著降低种子内源SA含量密切相关。研究表明外源SA主要通过提高保护酶活性、降低活性氧积累和维持体内离子平衡来增强羽衣甘蓝的耐盐性。
CAO D D, CHEN S Y, QIN Y B, et al. Regulatory mechanism of salicylic acid on seed germination under salt stress in kale[J]. Bull Bot, 2020, 55(1):49-61.DOI: 10.11983/CBB19047.
[17]
苏宗明, 李先琨. 广西岩溶植被类型及其分类系统[J]. 广西植物, 2003, 23(4):289-293.
SU Z M, LI X K. The types of natural vegetation in Karst region of Guangxi and its classified system[J]. Guihaia, 2003, 23(4):289-293.DOI: 10.3969/j.issn.1000-3142.2003.04.001.
[18]
HUANG Y Q, ZHAO P, ZHANG Z F, et al. Transpiration of Cyclobalanopsis glauca (syn.Quercus glauca) stand measured by sap-flow method in a Karst rocky terrain during dry season[J]. Ecol Res, 2009, 24(4):791-801.DOI: 10.1007/s11284-008-0553-6.
[19]
程彩芳, 陆爱云, 李正才, 等. 不同林龄木荷-青冈栎混交林幼林碳储量[J]. 生态学杂志, 2015, 34(10):2705-2710.
CHENG C F, LU A Y, LI Z C, et al. Carbon storage in mixed Schima superba Gardn.et Champ.-Cyclobalanpsis glauca (Thunb.) Oerst.young plantations at different stand ages[J]. Chin J Ecol, 2015, 34(10):2705-2710. DOI: 10.13292/j.1000-4890.2015.0249.
[20]
程彩芳, 李正才, 周君刚, 等. 树种组成对北亚热带11年生常绿阔叶人工林碳储量的影响[J]. 西北植物学报, 2015, 35(5):1037-1043.
CHENG C F, LI Z C, ZHOU J G, et al. Effects of tree species composition on carbon storage of 11 years old evergreen broad-leaved plantations in north subtropical areas of China[J]. Acta Bot Boreali-Occidentalia Sin, 2015, 35(5):1037-1043.DOI: 10.7606/j.issn.1000-4025.2015.05.1037.
[21]
吴敏, 邓平, 赵英, 等. 喀斯特干旱环境对青冈栎叶片生长及叶绿素荧光动力学参数的影响[J]. 应用生态学报, 2019, 30(12):4071-4081.
WU M, DENG P, ZHAO Y, et al. Effects of drought on leaf growth and chlorophyll fluorescence kinetics parameters in Cyclobalanopsis glauca seedlings of Karst areas[J]. Chin J Appl Ecol, 2019, 30(12):4071-4081. DOI: 10.13287 /j.1001-9332.201912.001.
[22]
邓平, 吴敏, 赵英, 等. 干旱胁迫下外源钙对桂西北喀斯特地区青冈栎种子萌发的影响[J]. 西北农林科技大学学报(自然科学版), 2020, 48(2):69-79.
DENG P, WU M, ZHAO Y, et al. Effects of exogenous calcium on seed germination of Cyclobalanopsis glauca in Karst area of Northwestern Guangxi under draught stress[J]. J Northwest A&F Univ (Nat Sci Ed), 2020, 48(2):69-79.DOI: 10.13207/J.cnkj.jnwafu.2020.02.009.
[23]
吴敏, 张文辉, 马闯, 等. 干旱胁迫对栓皮栎种子萌发能力的影响[J]. 西北农林科技大学学报(自然科学版), 2017, 45(5):91-100.
WU M, ZHANG W H, MA C, et al. Effect of drought stress on seed germination ability of Quercus variabilis BL.[J]. J Northwest A&F Univ (Nat Sci Ed), 2017, 45(5):91-100.DOI: 10.13207/j.cnki.jnwafu.2017.05.013.
[24]
BOSCAGLI A, SETTE B. Seed germination enhancement in Satureja montana L. ssp. Montana[J]. Seed Sci Technol, 2001, 29(2):347-355.
[25]
DEBEZ A, BEN HAMED K, GRIGNON C, et al. Salinity effects on germination,growth,and seed production of the halophyte Cakile maritima[J]. Plant Soil, 2004, 262(1/2):179-189.DOI: 10.1023/B:PLSO.0000037034.47247.67.
[26]
李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000.
LI H S. Plant physiology and biochemistry experimental principles and techniques[M]. Beijing: Higher Education Press, 2000.
[27]
TALEI D, VALDIANI A, YUSOP M K, et al. Estimation of salt to-lerance in Andrographis paniculata accessions using multiple regression model[J]. Euphytica, 2013, 189(1):147-160.DOI: 10.1007/s10681-012-0782-1.
[28]
BELKHADI A, HEDIJI H, ABBES Z, et al. Effects of exogenous salicylic acid pre-treatment on cadmium toxicity and leaf lipid content in Linum usitatissimum L.[J]. Ecotoxicol Environ Saf, 2010, 73(5):1004-1011.DOI: 10.1016/j.ecoenv.2010.03.009.
[29]
李志萍, 张文辉, 崔豫川. NaCl和Na2CO3胁迫对栓皮栎种子萌发及幼苗生长的影响[J]. 生态学报, 2015, 35(3):742-751.
LI Z P, ZHANG W H, CUI Y C. Effects of NaCl and Na2CO3 stresses on seed germination and seedling growth of Quercus variabilis[J]. Acta Ecol Sin, 2015, 35(3):742-751.DOI: 10.5846/stxb201304190747.
[30]
王国华, 郭文婷, 缑倩倩. 钠盐胁迫对河西走廊荒漠绿洲过渡带典型一年生草本植物种子萌发的影响[J]. 应用生态学报, 2020, 31(6):1941-1947.
WANG G H, GUO W T, GOU Q Q. Effects of sodium salt stress on seed germination of typical annuals in a desert-oasis ecotone of Hexi Corridor,China[J]. Chin J Appl Ecol, 2020, 31(6):1941-1947.DOI: 10.13287/j.1001-9332.202006.006.
[31]
郑燕, 张鸿翎, 刘嘉伟, 等. NaCl胁迫对黑果枸杞种子萌发特性的影响[J]. 内蒙古农业大学学报(自然科学版), 2019, 40(3):24-32.
ZHENG Y, ZHANG H L, LIU J W, et al. Effects of NaCL salt tolerance on seeds germination for wild Lycium ruthenicum Murr[J]. J Inn Mong Agric Univ (Nat Sci Ed), 2019, 40(3):24-32.DOI: 10.16853/j.cnki.1009-3575.2019.03.005.
[32]
王俊娟, 王德龙, 樊伟莉, 等. 陆地棉萌发至三叶期不同生育阶段耐盐特性[J]. 生态学报, 2011, 31(13):3720-3727.
WANG J J, WANG D L, FAN W L, et al. The characters of salt-tolerance at different growth stages in cotton[J]. Acta Ecol Sin, 2011, 31(13):3720-3727.
[33]
李玉梅, 冯颖, 姜云天, 等. 混合盐胁迫对东北薄荷种子萌发及幼苗生长的影响[J]. 西北农林科技大学学报(自然科学版), 2019, 47(10):52-62.
LI Y M, FENG Y, JIANG Y T, et al. Effects of mixed salt stress on seed germination and seeding growth of Mentia sachalinensis (Briq.) Kudo[J]. J Northwest AF Univ (Nat Sci Ed), 2019, 47(10):52-62.DOI: 10.13207/j.cnki.jnwafu.2019.10.007.
[34]
JAYAKANNAN M, BOSE J, BABOURINA O, et al. Salicylic acid improves salinity tolerance in Arabidopsis by restoring membrane potential and preventing salt-induced K+ loss via a GORK channel[J]. J Exp Bot, 2013, 64(8):2255-2268.DOI: 10.1093/jxb/ert085.
[35]
MA X, ZHENG J, ZHANG X, et al. Salicylic acid alleviates the adverse effects of salt stress on Dianthus superbus (Caryophylla-ceae) by activating photosynjournal, protecting morphological structure, and enhancing the antioxidant system[J]. Front Plant Sci, 2017, 8:600.DOI: 10.3389/fpls.2017.00600.
[36]
TORUN H, NOVÁK O, MIKULÍK J, et al. Timing-dependent effects of salicylic acid treatment on phytohormonal changes, ROS regulation, and antioxidant defense in salinized barley (Hordeum vulgare L.)[J]. Sci Rep, 2020, 10(1):1-17.DOI: 10.13886/s41598-020-70807-3.
[37]
NAZAR R, IQBAL N, SYEED S, et al. Salicylic acid alleviates decreases in photosynjournal under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mungbean cultivars[J]. J Plant Physiol, 2011, 168(8):807-815.DOI: 10.1016/j.jplph.2010.11.001.
[38]
BANINASAB B, BAGHBANHA M R. Influence of salicylic acid pre-treatment on emergence and early seedling growth of cucumber (Cucumis sativus) under salt stress[J]. Int J Plant Prod, 2013, 7(2):187-206.DOI: 10.1016/j.eja.2012.12.004.
[39]
彭宇, 张春兰, 沈其荣, 等. 盐胁迫下两种外源酚酸对黄瓜种子萌发及幼苗体内某些酶活性的效应[J]. 南京农业大学学报, 2003, 26(1):33-36.
PENG Y, ZHANG C L, SHEN Q R, et al. Effects of two phenolic acids on seed germination and activities of some emzymes in cucumber seedlings under salt stress[J]. J Nanjing Agric Univ, 2003, 26(1):33-36.DOI: 10.3321/j.issn:1000-2030.2003.01.008.

RIGHTS & PERMISSIONS

Copyright reserved © 2021
PDF(1888 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/