Construction of fingerprints for 33 varieties in Salicaceae

HE Xudong, ZHENG Jiwei, SUN Chong, HE Kaiyue, WANG Baosong

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2021, Vol. 45 ›› Issue (2) : 35-42.

PDF(2649 KB)
PDF(2649 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2021, Vol. 45 ›› Issue (2) : 35-42. DOI: 10.12302/j.issn.1000-2006.202008048

Construction of fingerprints for 33 varieties in Salicaceae

Author information +
History +

Abstract

【Objective】Populus and Salix are members of Salicaceae family. They are dioecious catkin-bearing woody plants that propagate easily, grow fast, and serve as an important source of wood (for furniture), plywood, fiberboard, and pulp and paper industries. In recent years, numerous Populus and Salix varieties have been selected and widely used for afforestation. However, the morphological characteristics among the varieties of Populus and Salix are quite similar, making it difficult to popularize and protect them. To precisely identify different varieties of Salicaceae, a fingerprint for improved varieties of Populus and Salix was established in this study. 【Methods】A total of 38 pairs of expressed sequence tag-derived simple sequence repeat (EST-SSR) markers with high polymorphism information content (PIC) derived from Salix in a previous study were selected randomly to evaluate the transferability of 33 varieties of Salicaceae, of which 12 were genotyped using the fluorescence dUTP method. The fingerprint of different varieties was constructed by the combination of the core primers. To elucidate the genetic relationship between the different varieties, the unweighted pair group method arithmetic average (UPGMA) was used for clustering analysis. 【Result】Among the 38 EST-SSR markers, transferability was 68.4% and 57.89% across all the Populus and Salix varieties, respectively. After genotyping, a total of 97 alleles were detected by 12 pairs of EST-SSR markers, and the number of alleles per locus ranged from 5 to 13, with an average of 8.1 alleles. The PIC of the 12 loci varied from 0.637 2 to 0.834 8, with an average of 0.781 7. Among the three optimal pairs of core primers, the combination of SALeSSR0340 and SALeSSR0346 completely distinguish 12 Populus varieties, and the combination of SALeSSR0259, SALeSSR0340, and SALeSSR0346 completely identified all the 33 varieties used in our study. Cluster analysis demonstrated that the similarity coefficient for the 33 improved varieties ranged from 0.68 to 0.96, and all the improved varieties could be separated into two clades, namely, the genera Populus and Salix, which consisted of the traditional taxonomy of Salicaceae. The clustering result of the genetic relationship of each variety also corresponded with the genetic background. 【Conclusion】In this study, the fingerprints of 33 improved varieties of Salicaceae were constructed and their genetic relationships were evaluated. The divergences between varieties could be effectively screened by the EST-SSR markers, and the genotyping system established in this study was also accurate and efficient. These results can provide scientific evidence for the identification, protection, and popularization of improved varieties of Populus and Salix.

Key words

Populus spp. / Salix spp. / SSR marker / fingerprint / genetic relationship / genotyping

Cite this article

Download Citations
HE Xudong , ZHENG Jiwei , SUN Chong , et al . Construction of fingerprints for 33 varieties in Salicaceae[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2021, 45(2): 35-42 https://doi.org/10.12302/j.issn.1000-2006.202008048

References

[1]
YE X, BUSOV V, ZHAO N, et al. Transgenic Populus trees for forest products,bioenergy,and functional genomics[J]. Crit Rev Plant Sci, 2011,30(5):415-434. DOI: 10.1080/07352689.2011.605737.
[2]
SMART L B, VOLK T A, LIN J, et al. Genetic improvement of shrub willow (Salix spp.) crops for bioenergy and environmental applications in the United States[J]. Unasylva, 2005,56(221):51-55. DOI: 10.1007/978-0-387-70805-8_13.
[3]
ROCKWOOD D L, NAIDU C V, CARTER D R, et al. Short-rotation woody crops and phytoremediation:opportunities for agroforestry?[J]. Agroforestry Syst, 2004,61:51-63. DOI: 10.1023/B:AGFO.0000028989.72186.e6.
[4]
PULFORD I D, WATSON C. Phytoremediation of heavy metal-contaminated land by trees: a review[J]. Environ Int, 2003,29(4):529-540. DOI: 10.1016/s0160-4120(02)00152-6.
[5]
LIU H L, YANG W X, HOU J, et al. Genetic identification of 43 elite clonal accessions of Populus deltoides by SSR fingerprinting[J]. Can J Plant Sci, 2016,96(3):494-502. DOI: 10.1139/cjps-2015-0272.
[6]
LIESEBACH H, SCHNECK V, EWALD E. Clonal fingerprinting in the genus Populus L.by nuclear microsatellite loci regarding differences between sections,species and hybrids[J]. Tree Genet Genomes, 2010,6(2):259-269. DOI: 10.1007/s11295-009-0246-5.
[7]
LI F G, GAN S M, ZHANG Z Y, et al. Microsatellite-based genotyping of the commercial Eucalyptus clones cultivated in China[J]. Silvae Genet, 2011,60(5):216-223. DOI: 10.1515/sg-2011-0029.
[8]
FARIA D A, MAMANI E M C, JR P G J, et al. Genotyping systems for Eucalyptus based on tetra-,penta-,and hexanucleotide repeat EST microsatellites and their use for individual fingerprinting and assignment tests[J]. Tree Genet Genomes, 2011,7(1):63-77. DOI: 10.1007/s11295-010-0315-9.
[9]
POLLEGIONI P, WOESTE K, MUGNOZZA G S, et al. Retrospective identification of hybridogenic walnut plants by SSR fingerprinting and parentage analysis[J]. Mol Breed, 2009,24(4):321-335. DOI: 10.1007/s11032-009-9294-7.
[10]
MANTIA L, LAIN T, CARUSO T, et al. SSR-based DNA fingerprints reveal the genetic diversity of Sicilian olive (Olea europaea L.) germplasm[J]. J Hortic Sci Biotechnol, 2005,80(5):628-632. DOI: 10.1080/14620316.2005.11511989.
[11]
MADHOU M, NORMAND F, BAHORUN T, et al. Fingerprinting and analysis of genetic diversity of Litchi (Litchi chinensis Sonn.) accessions from different germplasm collections using microsatellite markers[J]. Tree Genet Genomes, 2013,9(2):387-396. DOI: 10.1007/s11295-012-0560-1.
[12]
TAN L Q, PENG M, XU L Y, et al. Fingerprinting 128 Chinese clonal tea cultivars using SSR markers provides new insights into their pedigree relationships[J]. Tree Genet Genomes, 2015,11(5):1-12. DOI: 10.1007/s11295-015-0914-6.
[13]
荣浩, 黄彬, 周琦, 等. 61个观赏海棠品种的SSR指纹图谱构建及遗传多样性分析[J]. 南京林业大学学报(自然科学版), 2018,42(3):45-50.
RONG H, HUANG B, ZHOU Q, et al. The construction of fingerprints and genetic diversity analysis of 61 Malus crabapple cultivars based on SSR markers[J]. J Nanjing For Univ (Nat Sci Ed), 2018,42(3):45-50. DOI: 10.3969/j.issn.1000-2006.201801004.
[14]
段一凡, 王贤荣, 梁丽丽, 等. 桂花品种SSR荧光指纹图谱的构建[J]. 南京林业大学学报(自然科学版), 2014,38(S1):1-6.
DUAN Y F, WANG X R, LIANG L L, et al. Fingerprinting and identification of Osmanthus fragrans cultivars using fluorescence-labeled SSR markers[J]. J Nanjing For Univ (Nat Sci Ed), 2014,38(S1):1-6. DOI: 10.3969/j.issn.1000-2006.2014.S1.001.
[15]
TUSKAN G A, DIFAZIO S, JANSSON S, et al. The genome of black cottonwood,Populus trichocarpa (Torr.& Gray)[J]. Science, 2006,313(5793):1596-1604. DOI: 10.1126/science.1128691.
[16]
MA T, WANG J, ZHOU G, et al. Genomic insights into salt adaptation in a desert poplar[J]. Nat Commun, 4(1):2797. DOI: 10.1038/ncomms3797.
[17]
DAI X, HU Q, CAI Q, et al. The willow genome and divergent evolution from poplar after the common genome duplication[J]. Cell Res, 2014,24(10):1274. DOI: 10.1038/cr.2014.83.
[18]
WEI S Y, YANG Y H, YIN T M. The chromosome-scale assembly of the willow genome provides insight into Salicaceae genome evolution[J]. Hortic Res, 7(1):45. DOI: 10.1038/s41438-020-0268-6.
[19]
DU F K, XU F, QU H, et al. Exploiting the transcriptome of Euphrates Poplar,Populus euphratica (Salicaceae) to develop and characterize new EST-SSR markers and construct an EST-SSR database[J]. PLoS One, 2013,8(4):e61337. DOI: 10.1371/journal.pone.0061337.
[20]
TIAN X Y, ZHENG J W, JIAO Z Y, et al. Transcriptome sequencing and EST-SSR marker development in Salix babylonica and S.suchowensis[J]. Tree Genet Genomes, 2019,15(1):1-13. DOI: 10.1007/s11295-018-1315-4.
[21]
王源秀, 徐立安, 黄敏仁. 杞柳和簸箕柳候选杂交亲本SSR指纹分析[J]. 南京林业大学学报(自然科学版), 2008,32(2):1-5.
WANG Y X, XU L A, HUANG M R. Analysis of fingerprinting of Salix intagra Thunb and Salix suchowensis Cheng using microsatellite (SSR) markers[J]. J Nanjing For Univ (Nat Sci Ed), 2008,32(2):1-5. DOI: 10.3969/j.issn.1000-2006.2008.02.001.
[22]
郑纪伟, 孙冲, 周洁, 等. 柳树DNA提取改良方法研究[J]. 江苏林业科技, 2014,41(6):4-6,58.
ZHENG J W, SUN C, ZHOU J, et al. A modified method of DNA extraction from Salix[J]. J Jiangsu For Sci Technol, 2014,41(6):4-6,58. DOI: 10.3969/j.issn.1001-7380.2014.06.002.
[23]
ELLIS J R, BURKE J M. EST-SSRs as a resource for population genetic analyses[J]. Heredity (Edinb), 2007,99(2):125-132. DOI: 10.1038/sj.hdy.6801001.
[24]
GASIC K, HAN Y P, KERTBUNDIT S, et al. Characteristics and transferability of new apple EST-derived SSRs to other Rosaceae species[J]. Mol Breed, 2009,23(3):397-411. DOI: 10.1007/s11032-008-9243-x.
[25]
YADAV H K, RANJAN A, ASIF M H, et al. EST-derived SSR markers in Jatropha curcas L.development,characterization,polymorphism,and transferability across the species/genera[J]. Tree Genet Genomes, 2011,7(1):207-219. DOI: 10.1007/s11295-010-0326-6.
[26]
ZORRILLA-FONTANESI Y, CABEZA A, TORRES A M, et al. Development and Bin mapping of strawberry genic-SSRs in diploid Fragaria and their transferability across the Rosoideae subfamily[J]. Mol Breed, 2011,27(2):137-156. DOI: 10.1007/s11032-010-9417-1.
[27]
SAVADI S B, FAKRUDIN B, NADAF H L, et al. Transferability of Sorghum genic microsatellite markers to peanut[J]. Am J Plant Sci, 2012,3(9):1169-1180. DOI: 10.4236/ajps.2012.39142.
[28]
TUSKAN G A, GUNTER L E, YANG Z K, et al. Characterization of microsatellites revealed by genomic sequencing of Populus trichocarpa[J]. Can J For Res, 2004,34(1):85-93. DOI: 10.1139/x03-283.
[29]
杨彦伶, 张亚东, 张新叶. 杨树SSR标记在柳树中的通用性分析[J]. 分子植物育种, 2008,6(6):1134-1138.
YANG Y L, ZHANG Y D, ZHANG X Y. Transferability analysis of Populus SSR markers in Salix[J]. Mol Plant Breed, 2008,6(6):1134-1138. DOI: 10.3969/j.issn.1672-416X.2008.06.018.
[30]
韩骞, 王辉, 王进茂, 等. 利用SSR引物通用性分析杨柳科树种遗传多样性[J]. 分子植物育种, 2009,7(5):904-911.
HAN Q, WANG H, WANG J M, et al. Genetic diversity analysis of Salicaceae cultivars by transferablity of SSR primers[J]. Mol Plant Breed, 2009,7(5):904-911. DOI: 10.3969/mpb.007.000904.
[31]
涂忠虞. 柳树育种与栽培[M]. 南京: 江苏科学技术出版社, 1982.
TU Z Y. Breeding and cultivation of Salix[M]. Nanjing: Jiangsu Science and Technology Press, 1982.
[32]
冯锦霞, 张川红, 郑勇奇, 等. 利用荧光SSR标记鉴别杨树品种[J]. 林业科学, 2011,47(6):167-174.
FENG J X, ZHANG C H, ZHENG Y Q, et al. Identification of poplar varieties by SSR markers using capillary electrophoresis with fluorescence detection[J]. Sci Silvae Sin, 2011,47(6):167-174.
[33]
贾会霞, 姬慧娟, 胡建军, 等. 杨树新品种的SSR指纹图谱构建和倍性检测[J]. 林业科学, 2015,51(2):69-79.
JIA H X, JI H J, HU J J, et al. Fingerprints of SSR markers and ploidy detection for new Populus varieties[J]. Sci Silvae Sin, 2015,51(2):69-79. DOI: 10.11707/j.1001-7488.20150209.
[34]
郑纪伟, 教忠意, 窦全琴, 等. 利用荧光SSR标记构建含笑种质指纹图谱[J]. 分子植物育种, 2018,16(14):4705-4714.
ZHENG J W, JIAO Z Y, DOU Q Q, et al. Construction of fingerprint of Michelia germplasm by fluorescent SSR markers[J]. Mol Plant Breed, 2018,16(14):4705-4714. DOI: 10.13271/j.mpb.016.004705.
[35]
贾会霞, 吴立栓, 胡建军, 等. 柳树种质资源遗传多样性和亲缘关系的CE-AFLP分析[J]. 林业科学, 2013,49(6):37-44.
JIA H X, WU L S, HU J J, et al. Genetic diversity and genetic relationship of Salix germplasms revealed by CE-AFLP analysis[J]. Sci Silvae Sin, 2013,49(6):37-44. DOI: 10.11707/j.1001-7488.20130606.

RIGHTS & PERMISSIONS

Copyright reserved © 2021
PDF(2649 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/