Genetic variation analysis of Cinnamomum japonicum populations based on SLAF-Seq technique

YANG Ying, LIU Xiangdong, DUAN Hao, LU Zhiguo

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (5) : 33-39.

PDF(1820 KB)
PDF(1820 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (5) : 33-39. DOI: 10.12302/j.issn.1000-2006.202009001

Genetic variation analysis of Cinnamomum japonicum populations based on SLAF-Seq technique

Author information +
History +

Abstract

【Objective】Cinnamomum japonicum is a kind of protected tree species with important economic value, wild C. japonicum is a valuable genetic resource for breeding and improvement, and also is an important plant genetic resource in China. This study explored the genetic diversity and population spatial distribution pattern of C. japonicum resources in China, and laid a theoretical foundation for the protection and utilization of the resources.【Method】Specific focus amplified fragment sequencing (SLAF-seq) was performed on 30 individuals from seven populations of five provinces or municipality including Zhejiang, Anhui, Henan, Chongqing and Yunnan to develop SLAF and SNP(single nucleotide polymorphism) markers. 【Result】A total of 100.78 Mb reads data were obtained from 30 samples. After clustering the reads of different samples, a total of 1 296 000 SLAF tags were obtained. The average sequencing depth of each sample was 15.11. 377 250 SLAFs were polymorphic among different samples, and 3 409 402 SNPs were obtained from the polymorphic SLAF tags. After filtering, 268 821 population SNPs with high consistency were finally obtained. Phylogenetic analysis of these SNPs showed that C. japonicum was evolved from eastern to western China. Phylogenetic, principal component and population structure analysis all showed that the intra-population variation of the seven natural populations was smaller than the inter-population variation. The 30 individuals can be divided into two large groups, among which, the first group contained the resources collected from the second ladder of China, and the second contained resources from the third ladder of China. The two groups were separated by the Great Khingan-Taihang Mountains-Wushan Mountains-Xuefeng Mountain range. The second group can be further divided into three small subgroups, among which, those from Anhui Taoling and Zhejiang Province were included in the first subgroup, those from Anhui Huoshan were included in the second subgroup, and those from Henan Province were included in the third subgroup. The first and the second subgroup were separated by the Yangtze River. 【Conclusion】The barriers caused by mountains and lakes are important factors of the genetic differentiation of C. japonicum resources. This study reveals for the first time the genetic structure and geographical variation of C. japonicum, providing a theoretical basis for the effective utilization and scientific protection of the resources of C. japonicum.

Key words

Cinnamomum japonicum / specific-locus amplified fragment sequencing(SLAF-seq) / single nucleotide polymor phism (SNP) / genetic analysis

Cite this article

Download Citations
YANG Ying , LIU Xiangdong , DUAN Hao , et al. Genetic variation analysis of Cinnamomum japonicum populations based on SLAF-Seq technique[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2022, 46(5): 33-39 https://doi.org/10.12302/j.issn.1000-2006.202009001

References

[1]
魏振铎. 栾川县野生天竺桂资源保护初探[J]. 河南林业科技, 2010, 30(2):26-27.
WEI Z D. Preliminary study on the protection of wild Cinnamomum japonicum resources in Luanchuan County[J]. J Henan For Sci Tech, 2010, 30(2):26-27.DOI:10.3969/j.issn.1003-2630.2010.02.010.
[2]
段豪, 徐建华, 王紫阳, 等. 落羽杉属种类及其杂交子代‘中山杉’系列品种的SSR指纹图谱构建及遗传关系分析[J]. 植物资源与环境学报, 2020, 29(4):11-18,44.
DUAN H, XU J H, WANG Z Y, et al. Construction of SSR fingerprint and analysis on genetic relationship of Taxodium species and their hybrid progenies T.‘Zhongshanshan’series cultivars[J]. J Plant Resour Environ, 2020, 29(4):11-18,44.DOI: 10.3969/j.issn.1674-7895.2020.04.02.
[3]
ZHONG T L, ZHAO G W, LOU Y F, et al. Genetic diversity analysis of Sinojackia microcarpa,a rare tree species endemic in China,based on simple sequence repeat markers[J]. J For Res, 2019, 30(3):847-85. DOI:10.1007/s11676-018-0660-3.
[4]
JURKSIENE G, BARANOV O Y, KAGAN D I, et al. Genetic diversity and differentiation of pedunculate (Quercus robur) and sessile (Q. petraea) oaks[J]. J For Res, 2020, 31(6):2445-2452. DOI:10.1007/s11676-019-01043-3.
[5]
DI X Y, MENG X X, WANG M B. Range-wide genetic diversity in natural populations of Larix principis-rupprechtii Mayr[J]. J For Res, 2021, 32(1):319-327. DOI:10.1007/s11676-019-01085-7.
[6]
陆叶, 龙晓飞, 王鹏凯, 等. 基于RAD-seq技术的鹅掌楸基因组SNP标记开发[J]. 南京林业大学学报(自然科学版), 2019, 43(4):1-7.
LU Y, LONG X F, WANG P K, et al. Development of genomic SNP markers based on RAD-seq and genome data in Liriodendron[J]. J Nanjing For Univ (Nat Sci Ed), 2019, 43(4):1-7. DOI:10.3969/j.issn.1000-2006.201806010.
[7]
陈立杰, 张素勤, 尹杰, 等. 贵阳花溪古茶树遗传进化的SNP分析[J]. 西南大学学报(自然科学版), 2019, 41(8):33-40.
CHEN L J, ZHANG S Q, YIN J, et al. SNP analysis of the genetic evolution of ancient Camellia sinensis trees from Huaxi,Guiyang[J]. J Southwest Univ (Nat Sci Ed), 2019, 41(8):33-40. DOI:10.13718/j.cnki.xdzk.2019.08.006.
[8]
段义忠, 王建武, 杜忠毓, 等. 基于SLAF-seq简化基因组技术的沙冬青SNP位点开发及遗传分析[J]. 植物研究, 2018, 38(1):141-147.
DUAN Y Z, WANG J W, DU Z Y, et al. SNP sites developed by specific length amplification fragment sequencing(SLAF-seq) and genetic analysis in Ammopitanthus mongolicus[J]. Bull Bot Res, 2018, 38(1):141-147. DOI:10.7525/j.issn.1673-5102.2018.01.017.
[9]
DAVEY J W, CEZARD T, FUENTES-UTRILLA P, et al. Special features of RAD Sequencing data: implications for genotyping[J]. Mol Ecol, 2013, 22(11):3151-3164. DOI:10.1111/mec.12084.
[10]
KOZICH J J, WESTCOTT S L, BAXTER N T, et al. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform[J]. Appl Environ Microbiol, 2013, 79(17):5112-5120. DOI:10.1128/AEM.01043-13.
[11]
LI H, DURBIN R. Fast and accurate long-read alignment with Burrows-Wheeler transform[J]. Bioinformatics, 2010, 26(5):589-595. DOI:10.1093/bioinformatics/btp698.
[12]
MCKENNA A, HANNA M, BANKS E, et al. The genome analysis toolkit:a MapReduce framework for analyzing next-generation DNA sequencing data[J]. Genome Res, 2010, 20(9):1297-1303.DOI:10.1101/gr.107524.110.
[13]
LI H, HANDSAKER B, WYSOKER A, et al. The sequence alignment/map format and SAMtools[J]. Bioinformatics, 2009, 25(16):2078-2079.DOI:10.1093/bioinformatics/btp352.
[14]
DANECEK P, AUTON A, ABECASIS G, et al. The variant call format and VCFtools[J]. Bioinformatics, 2011, 27(15):2156-2158. DOI:10.1093/bioinformatics/btr330.
[15]
PFEIFER B, WITTELSBÜRGER U, RAMOS-ONSINS S E, et al. PopGenome:an efficient Swiss army knife for population genomic analyses in R[J]. Mol Biol Evol, 2014, 31(7):1929-1936.DOI:10.1093/molbev/msu136.
[16]
KUMAR S, STECHER G, LI M, et al. MEGA X:Molecular evolutionary genetics analysis across computing platforms[J]. Mol Biol Evol, 2018, 35(6):1547-1549. DOI:10.1093/molbev/msy096.
[17]
ALEXANDER D H, NOVEMBRE J, LANGE K. Fast model-based estimation of ancestry in unrelated individuals[J]. Genome Res, 2009, 19(9):1655-1664. DOI:10.1101/gr.094052.109.
[18]
PRITCHARD J K, STEPHENS M, DONNELLY P. Inference of population structure using multilocus genotype data[J]. Genetics, 2000, 155(2):945-959. DOI:10.1093/genetics/155.2.945.
[19]
PRICE A L, PATTERSON N J, PLENGE R M, et al. Principal components analysis corrects for stratification in genome-wide association studies[J]. Nature Genetics, 2006, 38(8):904-909. DOI: 10.1038/ng1847.
[20]
LI R, YU C, LI Y, et al. SOAP2: an improved ultrafast tool for short read alignment[J]. Bioinformatics, 2009, 25(15):1966-1967.
PDF(1820 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/