JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2021, Vol. 45 ›› Issue (2): 25-34.doi: 10.12302/j.issn.1000-2006.202009007
Previous Articles Next Articles
ZHAO Runan1(), CHU Xiaojie2, LIU Wei1, HE Qianqian1, ZHU Zunling1,3,*()
Received:
2020-09-02
Accepted:
2020-11-16
Online:
2021-03-30
Published:
2021-04-09
Contact:
ZHU Zunling
E-mail:zhao-rn@njfu.edu.cn;zhuzunling@njfu.edu.cn
CLC Number:
ZHAO Runan, CHU Xiaojie, LIU Wei, HE Qianqian, ZHU Zunling. Structure and variation analyses of chloroplast genomes in Carpinus[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(2): 25-34.
Table 1
The species of Carpinus and their chloroplast GenBank accession numbers"
种名 species | GenBank登录号 GenBank No. | 种名 species | GenBank登录号 GenBank No. |
---|---|---|---|
川黔千金榆C. fangiana | MG386371.1 | 多脉鹅耳枥C. polyneura | NC_039998.1 |
千金榆C. cordata | NC_036723.1 | 云南鹅耳枥C. monbeigiana | NC_039997.1 |
天台鹅耳枥C. tientaiensis | NC_034910.1 | 昌化鹅耳枥C. tschonoskii | NC_039938.1 |
普陀鹅耳枥C. putoensis | NC_033503.1 | 川陕鹅耳枥C. fargesiana | NC_039937.1 |
太鲁阁鹅耳枥C. hebestroma | NC_038131.1 | 美洲鹅耳枥C. caroliniana | NC_039935.1 |
紫脉鹅耳枥C. purpurinervis | NC_038093.1 | 欧洲鹅耳枥C. betulus | NC_039934.1 |
宝华鹅耳枥C. oblongifolia | MG720817.1 | 疏花鹅耳枥C. laxiflora | MK425701.1 |
岩生鹅耳枥C. rupestris | NC_039999.1 | 雷公鹅耳枥C. viminea | NC_039939.1 |
Table 2
Comparison of chloroplast genomes of 16 Carpinus species"
树种 speices | 基因组 大小/bp genome size | GC含量/% GC content | rRNA | tRNA | 蛋白编码 基因数 protein coding gene | 总基因数 total genes | LSS/ bp | SSC/ bp | IRa/bp | IRb/bp |
---|---|---|---|---|---|---|---|---|---|---|
川黔千金榆 C. fangiana | 158 787 | 36.50 | 8 | 31 | 86 | 126 | 88 168 | 18 537 | 26 041 | 26 041 |
千金榆 C. cordata | 159 157 | 36.50 | 8 | 30 | 86 | 125 | 88 525 | 18 556 | 26 038 | 26 038 |
天台鹅耳枥 C. tientaiensis | 160 104 | 36.40 | 8 | 29 | 86 | 124 | 89 445 | 18 588 | 26 035 | 26 036 |
普陀鹅耳枥 C. putoensis | 159 673 | 36.40 | 8 | 29 | 85 | 122 | 89 019 | 18 565 | 26 043 | 26 046 |
太鲁阁鹅耳枥 C. hebestroma | 159 231 | 36.50 | 8 | 30 | 85 | 123 | 88 168 | 18 872 | 26 095 | 26 096 |
紫脉鹅耳枥 C. purpurinervis | 159 145 | 36.50 | 8 | 29 | 86 | 123 | 88 186 | 18 800 | 26 079 | 26 079 |
宝华鹅耳枥 C. oblongifolia | 159 086 | 36.50 | 8 | 30 | 86 | 124 | 88 190 | 18 763 | 26 066 | 26 067 |
岩生鹅耳枥 C. rupestris | 158 888 | 36.40 | 8 | 29 | 86 | 123 | 87 972 | 18 779 | 26 068 | 26 069 |
多脉鹅耳枥 C. polyneura | 159 400 | 36.40 | 8 | 30 | 86 | 124 | 88 516 | 18 764 | 26 060 | 26 060 |
云南鹅耳枥 C. monbeigiana | 159 450 | 36.40 | 8 | 30 | 86 | 124 | 88 553 | 18 775 | 26 061 | 26 061 |
昌化鹅耳枥 C. tschonoskii | 159 505 | 36.40 | 8 | 30 | 86 | 124 | 88 616 | 18 758 | 26 065 | 26 066 |
川陕鹅耳枥 C. fargesiana | 159 484 | 36.40 | 8 | 30 | 86 | 124 | 88 519 | 18 814 | 26 075 | 26 076 |
美洲鹅耳枥 C. caroliniana | 160 151 | 36.30 | 8 | 31 | 86 | 125 | 88 555 | 18 517 | 26 542 | 26 543 |
欧洲鹅耳枥 C. betulus | 160 583 | 36.40 | 8 | 29 | 86 | 123 | 88 282 | 17 184 | 27 567 | 27 568 |
疏花鹅耳枥 C. laxiflora | 159 225 | 36.50 | 8 | 30 | 86 | 124 | 88 359 | 18 764 | 26 066 | 26 066 |
雷公鹅耳枥 C. viminea | 158 681 | 36.50 | 8 | 29 | 86 | 123 | 87 808 | 18 808 | 26 032 | 26 033 |
Table 3
Length of the coding region and the intron-containing gene in chloroplast genome of 16 species in Carpinusbp"
树种 species | rps16 | atpF | rpoC1 | ycf3 | clpP | petB | petD | rpl16 | rpl2 | ndhB | ndhA | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
编码 区长 coding region length | 基因 全长 gene length | 编码 区长 coding region length | 基因 全长 gene length | 编码 区长 coding region length | 基因 全长 gene length | 编码 区长 coding region length | 基因 全长 gene length | 编码 区长 coding region length | 基因 全长 gene length | 编码 区长 coding region length | 基因 全长 gene length | 编码 区长 coding region length | 基因 全长 gene length | 编码 区长 coding region length | 基因 全长 gene length | 编码 区长 coding region length | 基因 全长 gene length | 编码 区长 coding region length | 基因 全长 gene length | 编码 区长 coding region length | 基因 全长 gene length | |
川黔千金榆 C. fangiana | 258 | 1 132 | 555 | 1 304 | 2 058 | 2 871 | 507 | 2 002 | 591 | 2 014 | 648 | 1 372 | 483 | 1 103 | 408 | 1 481 | 825 | 1 513 | 1 539 | 2 225 | 1 095 | 2 292 |
千金榆 C. cordata | 258 | 1 132 | 555 | 1 304 | 2 058 | 2 885 | 507 | 2 002 | 591 | 2 015 | 648 | 1 441 | 483 | 1 103 | 408 | 1 498 | 825 | 1 513 | 1 539 | 2 225 | 1 095 | 2 293 |
天台鹅耳枥 C. tientaiensis | 258 | 1 132 | 555 | 1 305 | 2 058 | 2 870 | 507 | 2 008 | 591 | 2 013 | - | - | 483 | 1 103 | 408 | 1 484 | 825 | 1 513 | 1 539 | 2 225 | 1 095 | 2 292 |
普陀鹅耳枥 C. putoensis | 258 | 1 132 | 555 | 1 306 | 2 058 | 2 869 | 507 | 2 008 | 591 | 2 015 | - | - | 483 | 1 103 | 408 | 1 316 | 825 | 1 513 | 1 539 | 2 225 | 1 095 | 2 287 |
太鲁阁鹅耳枥 C. hebestroma | 240 | 1 132 | 558 | 1 307 | 2 052 | 2 879 | 510 | 2 002 | 591 | 2 013 | 648 | 1 445 | 483 | 1 103 | 408 | 1 483 | 864 | 1 513 | 1 539 | 2 225 | 1 092 | 2 283 |
紫脉鹅耳枥 C. purpurinervis | 240 | 1 132 | 558 | 1 303 | 2 052 | 2 869 | 510 | 2 007 | 591 | 2 014 | 648 | 1 441 | 483 | 1 103 | 408 | 1 483 | 864 | 1 513 | 1 539 | 2 225 | 1 092 | 2 292 |
宝华鹅耳枥 C. oblongifolia | 240 | 1 132 | 558 | 1 306 | 2 052 | 2 870 | 510 | 2 002 | 591 | 2 012 | 648 | 1 445 | 483 | 1 103 | 408 | 1 483 | 864 | 1 513 | 1 539 | 2 225 | 1 092 | 2 291 |
岩生鹅耳枥 C. rupestris | 258 | 1 132 | 555 | 1 304 | 2 058 | 2 869 | 507 | 2 008 | 591 | 2 013 | 648 | 1 441 | 483 | 1 103 | 408 | 1 483 | 825 | 1 513 | 1 539 | 2 225 | 1 095 | 2 292 |
多脉鹅耳枥 C. polyneura | 258 | 1 132 | 555 | 1 306 | 2 058 | 2 870 | 507 | 1 995 | 591 | 2 012 | 648 | 1 445 | 483 | 1 103 | 408 | 1 483 | 825 | 1 513 | 1 539 | 2 225 | 1 095 | 2 290 |
云南鹅耳枥 C. monbeigiana | 258 | 1 132 | 555 | 1 305 | 2 058 | 2 870 | 507 | 2 002 | 591 | 2 011 | 648 | 1 445 | 483 | 1 103 | 408 | 1 483 | 825 | 1 513 | 1 539 | 2 225 | 1 095 | 2 298 |
昌化鹅耳枥 C. tschonoskii | 240 | 1 132 | 558 | 1 307 | 2 052 | 2 871 | 510 | 2 002 | 591 | 2 012 | 648 | 1 445 | 483 | 1 103 | 408 | 1 483 | 864 | 1 513 | 1 539 | 2 225 | 1 092 | 2 289 |
川陕鹅耳枥 C. fargesiana | 240 | 1 132 | 558 | 1 305 | 2 052 | 2 870 | 510 | 2 000 | 591 | 2 011 | 648 | 1 445 | 483 | 1 103 | 408 | 1 483 | 864 | 1 513 | 1 539 | 2 225 | 1 092 | 2 291 |
美洲鹅耳枥 C. caroliniana | 240 | 1 132 | 558 | 1 308 | 2 052 | 2 871 | 510 | 2 001 | 591 | 2 010 | 648 | 1 441 | 483 | 1 103 | 408 | 1 489 | 864 | 1 513 | 1 539 | 2 225 | 1 092 | 2 303 |
欧洲鹅耳枥 C. betulus | 240 | 1 132 | 558 | 1 306 | 2 052 | 2 871 | 510 | 2 001 | 591 | 2 015 | 648 | 1 449 | 483 | 1 103 | 408 | 1 478 | 864 | 1 513 | 1 539 | 2 225 | 1 092 | 2 289 |
疏花鹅耳枥 C. laxiflora | 240 | 1 132 | 558 | 1 308 | 2 052 | 2 870 | 507 | 2 002 | 591 | 2 009 | 648 | 1 445 | 483 | 1 103 | 411 | 1 483 | 864 | 1 513 | 1 539 | 2 225 | 1 092 | 2 302 |
雷公鹅耳枥 C. viminea | 240 | 1 132 | 558 | 1 304 | 2 052 | 2 869 | 510 | 2 008 | 591 | 2 013 | 648 | 1 441 | 483 | 1 103 | 408 | 1 483 | 864 | 1 513 | 1 539 | 2 225 | 1 092 | 2 293 |
[1] | NEUHAUS H E, EMES M J. Nonphotosynthetic metabolism in plastids[J]. Annu Rev Plant Physiol Plant Mol Biol, 2000,51(1):111-140.DOI: 10.1146/annurev.arplant.51.1.111. |
[2] | SHINOZAKI K, OHME M, TANAKA M, et al. The complete nucleotide sequence of the tobacco chloroplast genome[J]. Plant Mol Biol Report, 1986,4(3):111-148.DOI: 10.1007/BF02669253. |
[3] | NOCK C J, WATERS D L, EDWARDS M A, et al. Chloroplast genome sequences from total DNA for plant identification[J]. Plant Biotechnol J, 2011,9(3):328-333.DOI: 10.1111/j.1467-7652.2010.00558.x. |
[4] | RAVI V, KHURANA J P, TYAGI A K, et al. An update on chloroplast genomes[J]. Plant Syst Evol, 2008,271(1/2):101-122.DOI: 10.1007/s00606-007-0608-0. |
[5] | HU Y, ZHANG Q, RAO G, et al. Occurrence of plastids in the sperm cells of Caprifoliaceae:biparental plastid inheritance in angiosperms is unilaterally derived from maternal inheritance[J]. Plant Cell Physiol, 2008,49(6):958-968.DOI: 10.1093/pcp/pcn069. |
[6] | ZHANG Q SODMERGE N. Why does biparental plastid inheritance revive in angiosperms?[J]. J Plant Res, 2010,123(2):201-206.DOI: 10.1007/s10265-009-0291-z. |
[7] | 陈之端. 桦木科植物的系统发育和地理分布(续)[J]. 植物分类学报, 1994,32(2):101-153. |
CHEN Z D. Phylogeny and phytogeography of the Betulaceae (cont.)[J]. Acta Phytotaxon Sin, 1994,32(2):101-153. | |
[8] | 李沛群, 郑斯绪. 中国植物志:第21卷[M]. 北京: 科学出版社, 1979: 84-85. |
LI P Q, ZHENG S X. Flora republicae popularis sinica: Vol. 21[M]. Beijing: Science Press, 1979: 84-85. | |
[9] | LI P C, SKVORTSOV A K. Flora of China: Vol. 4[M]. Beijing: Science Press, 1999: 289-300. |
[10] | 李素梅, 汪庆, 王淑安, 等. 江苏宝华山宝华鹅耳枥种群现状分析[J]. 植物资源与环境学报, 2020,29(1):52-58. |
LI S M, WANG Q, WANG S A, et al. Analysis on population status of Carpinus oblongifolia in Baohua Mountain of Jiangsu Province[J]. J Plant Resour Environ, 2020,29(1), 52-58 DOI: 10.3969/j.issn.1674-7895.2020.01.07. | |
[11] | FENG S, XIE X Y, WANG M C, et al. Characterization of the complete chloroplast genome of Carpinus putoensis[J]. Conserv Genet Resour, 2017,9(1):127-129.DOI: 10.1007/s12686-016-0604-1. |
[12] | YANG Y Z, WANG M C, LU Z Q, et al. Characterization of the complete chloroplast genome of Carpinus tientaiensis[J]. Conserv Genet Resour, 2017,9(2):339-341.DOI: 10.1007/s12686-016-0668-y. |
[13] | WANG G N, LI Y. The complete chloroplast genome of Carpinus hebestroma,a critically endangered species endemic to Taiwan[J]. Mitochondrial DNA Part B, 2018,3(2):693-694.DOI: 10.1080/23802359.2018.1481784. |
[14] | WANG J R, WANG M H. Complete chloroplast genome sequence of Carpinus oblongifolia (Betulaceae) and phylogenetic analysis[J]. Mitochondrial DNA Part B, 2019,4(1):1304-1305.DOI: 10.1080/23802359.2019.1591216. |
[15] | LEE M W, KIM S C, AHN J Y, et al. The complete chloroplast genome of Carpinus laxiflora (Betulaceae)[J]. Mitochondrial DNA Part B, 2019,4(1):1643-1644.DOI: 10.1080/23802359.2019.1604184. |
[16] | LI Y, YANG Y Z, YU L, et al. Plastomes of nine hornbeams and phylogenetic implications[J]. Ecol Evol, 2018,8(17):8770-8778.DOI: 10.1002/ece3.4414. |
[17] | 杨霄月. 桦木科叶绿体基因组的系统发育分析[D]. 兰州:兰州大学, 2019. |
YANG X Y. Phylogenetic analysis of Betulaceae plastomes[D]. Lanzhou:Lanzhou University, 2019. | |
[18] | YANG X Y, WANG Z F, LUO W C, et al. Plastomes of Betulaceae and phylogenetic implications[J]. J Syst Evol, 2019,57(5):508-518.DOI: 10.1111/jse.12479. |
[19] | GREINER S, LEHWARK P, BOCK R. OrganellarGenomeDRAW (OGDRAW) version 1.3.1:Expanded toolkit for the graphical visualization of organellar genomes[J]. Nucleic Acids Res, 2019,47(W1):W59-W64.DOI: 10.1093/nar/gkz238. |
[20] | AMIRYOUSEFI A, HYVÖNEN J, POCZAI P. IRscope:an online program to visualize the junction sites of chloroplast genomes[J]. Bioinformatics, 2018,34(17):3030-3031.DOI: 10.1093/bioinformatics/bty220. |
[21] | FRAZER K A, PACHTER L, POLIAKOV A, et al. VISTA:computational tools for comparative genomics[J]. Nucleic Acids Res, 2004,32(suppl_2):W273-W279.DOI: 10.1093/nar/gkh458. |
[22] | KUMAR S, STECHER G, LI M, et al. MEGA X:Molecular evolutionary genetics analysis across computing platforms[J]. Mol Biol Evol, 2018,35(6):1547-1549.DOI: 10.1093/molbev/msy096. |
[23] | CHUMLEY T W, PALMER J D, MOWER J P, et al. The complete chloroplast genome sequence of Pelargonium × hortorum:organization and evolution of the largest and most highly rearranged chloroplast genome of land plants[J]. Mol Biol Evol, 2006,23(11):2175-2190.DOI: 10.1093/molbev/msl089. |
[24] | SERRANO M, WANG B, ARYAL B, et al. Export of salicylic acid from the chloroplast requires the multidrug and toxin extrusion-like transporter EDS5[J]. Plant Physiol, 2013,162(4):1815-1821.DOI: 10.1104/pp.113.218156. |
[25] | GUISINGER M M, KUEHL J V, BOORE J L, et al. Extreme reconfiguration of plastid genomes in the angiosperm family Geraniaceae:rearrangements,repeats,and codon usage[J]. Mol Biol Evol, 2011,28(1):583-600.DOI: 10.1093/molbev/msq229. |
[26] | HIRAO T, WATANABE A, KURITA M, et al. Complete nucleotide sequence of the Cryptomeria japonica D.Don.chloroplast genome and comparative chloroplast genomics: diversified genomic structure of coniferous species[J]. BMC Plant Biol, 2008,8(1):70.DOI: 10.1186/1471-2229-8-70. |
[27] | PALMER J D, THOMPSON W F. Rearrangements in the chloroplast genomes of mung bean and pea[J]. PNAS, 1981,78(9):5533-5537.DOI: 10.1073/pnas.78.9.5533. |
[28] | MAIER R M, NECKERMANN K, IGLOI G L, et al. Complete sequence of the maize chloroplast genome: gene content,hotspots of divergence and fine tuning of genetic information by transcript editing[J]. J Mol Biol, 1995,251(5):614-628.DOI: 10.1006/jmbi.1995.0460. |
[29] | DEMPEWOLF H, KANE N C, OSTEVIK K L, et al. Establishing genomic tools and resources for Guizotia abyssinica (L.f.) Cass: the development of a library of expressed sequence tags,microsatellite loci,and the sequencing of its chloroplast genome[J]. Mol Ecol Resour, 2010,10(6):1048-1058.DOI: 10.1111/j.1755-0998.2010.02859.x. |
[30] | 童毅华, 彭权森, 夏念和. 香港桦木科一新种:香港鹅耳枥[J]. 热带亚热带植物学报, 2014(2):121-124. |
TONG Y H, PANG Q S, XIA N H. Carpinus insularis(Betulaceae): a new species from Hong Kong,China[J]. J Trop Subtrop Bot, 2014(2):121-124.DOI: 10.3969/j.issn.1005-3395.2014.02.002. | |
[31] | LU Z Q, LIU S Y, YANG X Y, et al. Carpinus langaoensis (Betulaceae),a new hornbeam species from the Daba Mountains in Shaanxi,China[J]. Phytotaxa, 2017,295(2):185.DOI: 10.11646/phytotaxa.295.2.6. |
[32] | LU Z, LI Y, YANG X, et al. Carpinus tibetana(Betulaceae): a new species from southeast Tibet,China[J]. PhytoKeys, 2018(98):1-13.DOI: 10.3897/phytokeys.98.23639. |
[33] | LU Z. Carpinus gigabracteatus: a new species from Southeast Yunnan,China[J]. PhytoKeys, 2020,145:47-56.DOI: 10.3897/phytokeys.145.49488. |
[34] | CHEN Z D, MANCHESTER S R, SUN H Y. Phylogeny and evolution of the Betulaceae as inferred from DNA sequences,morphology,and paleobotany[J] . Am J Bot, 1999,86(8):1168-1181.DOI: 10.2307/2656981. |
[35] | 鲁志强. 中国桦木科榛亚科的物种界定研究[D]. 兰州:兰州大学, 2017. |
LU Z Q. Species delimitation in the subfamily coryloideae of Betulaceae in China[D]. Lanzhou:Lanzhou University, 2017. |
[1] | LIU Jie, ZHANG Lang, ZHANG Qingping. The evolution and driving mechanism of urban green space system: a case study of Xuchang City, Henan Province, China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(3): 275-284. |
[2] | YI Xiangui, LI Meng, WANG Xianrong. A review on the taxonomy study of Prunus subgen. Cerasus (Mill) A. Gray [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(3): 46-57. |
[3] | LU Xudong, DONG Yuran, LI Yao, MAO Lingfeng. Community assembly mechanism for different planting ages of Chinese fir artificial forests in subtropical China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(1): 67-73. |
[4] | OU Yang, OUYANG Fangqun, SUN Meng, WANG Chao, WANG Junhui, AN Sanping, WANG Lifang, XU Na, WANG Meng. Young growth rhythm, annual and density interaction effects and selection strategies of Picea abies clones [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(6): 95-104. |
[5] | FAN Boqing, LIU Dongyun, WANG Siyuan, Muhammad·Amir·Siddique . Spatio-temporal evolution of surface temperature in urban green space: a case study within the Sixth Ring Road in Beijing [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(5): 197-204. |
[6] | CAO Linqing, ZHONG Qiuping, ZOU Yuling, TIAN Feng, HE Yichang. Leaf structure variations and relationship with environmental factors among germplasm resources of Vernicia fordii [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(4): 95-102. |
[7] | CUI Zhihua, LYU Yanjie, YANG Xinyu. Analysis on the gradient evolution of soundscape between urban and rural areas in Nanjing Metropolitan area [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(3): 199-206. |
[8] | WANG Wenyue, ZHANG Zhen, JIN Guoqing, SUN Linshan, QIU Yongbin, ZHOU Zhichun, YANG Tao. Family variation and selection of growth traits of eight-year-old Cupressus funebris in two sites [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(2): 42-48. |
[9] | LIU Yamei, LIU Shengquan, ZHOU Liang, HU Jianjun, ZHAO Zicheng, ZHENG Xiangli. Anatomical characteristics and radial variations in eight poplar clones/cultivars [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(1): 234-240. |
[10] | LUO Jianxun, LIU Furong, SONG Peng, LAI Shihui. Cryptomeria japonica ‘Fupang’: a new cultivar of C. japonica [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(1): 241-242. |
[11] | CHU Chenchen, SUN Mingsheng, WU Yuhan, YAN Zhenyu, LI Ting, FENG Yangfan, GUO Ying, YIN Tongming, XUE Liangjiao. Pan-genome and genomic variation analyses of Populus [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(6): 251-260. |
[12] | HE Xudong, SUI Dezong, WANG Hongling, HUANG Ruifang, ZHENG Jiwei, WANG Baosong. Research progresses of willow genetic breeding in China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(6): 51-63. |
[13] | JIA Qingbin, LIU Geng, ZHAO Jiali, LI Kuiyou, SUN Wensheng. Variation analyses of growth traits in half-sib families of Korean pine and superior families selection [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(4): 109-116. |
[14] | WANG Bixia, DU Xiaoqi, DENG Yan, CAI Xiaomei, SU Guangcan. Seasonal variations of the nutrients and phenols from olive leaves in main cultivation varieties at Liangshan, Sichuan Province [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(4): 169-176. |
[15] | SONG Shuang, SHI Mengxi, HU Shanshan, WANG Shaohan, XU Dawei. Evolutions and driving mechanisms of urban blue-green spaces in northeast China: a case study with the urban central district of Harbin City [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(4): 221-229. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||