JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2021, Vol. 45 ›› Issue (4): 23-32.doi: 10.12302/j.issn.1000-2006.202009021
Previous Articles Next Articles
ZHAO Yinghui1,2(), YANG Haicheng1, ZHEN Zhen1,2,*(
)
Received:
2020-09-09
Accepted:
2020-11-02
Online:
2021-07-30
Published:
2021-07-30
Contact:
ZHEN Zhen
E-mail:zyinghui0925@126.com;zhzhen@syr.edu
CLC Number:
ZHAO Yinghui, YANG Haicheng, ZHEN Zhen. Tree height estimations for different forest canopies in natural secondary forests based on ULS, TLS and ultrasonic altimeter systems[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(4): 23-32.
Table 1
Statistic features of sample plot trees"
树木类型 tree types | 株数 number of trees | 统计特征 statistic feature | 胸径/ cm DBH | 树高/m tree height | 冠幅/m crown width |
---|---|---|---|---|---|
针叶树 coniferous trees | 144 | 最大值 | 25.90 | 15.40 | 5.87 |
最小值 | 5.60 | 5.40 | 1.80 | ||
平均值 | 14.13 | 10.71 | 3.42 | ||
标准差 | 5.14 | 2.48 | 0.96 | ||
阔叶树 broadleaved trees | 215 | 最大值 | 42.01 | 21.30 | 11.19 |
最小值 | 5.00 | 4.90 | 1.25 | ||
平均值 | 11.04 | 10.10 | 4.35 | ||
标准差 | 6.19 | 3.03 | 1.71 | ||
合计 total | 359 | 最大值 | 42.01 | 21.30 | 11.19 |
最小值 | 5.00 | 4.90 | 1.25 | ||
平均值 | 12.28 | 10.70 | 3.98 | ||
标准差 | 5.98 | 3.02 | 1.52 |
Table 2
The summary of outliers based on three data sources"
3种数据源 three data sources | 林冠上层 overstory canopy | 林冠下层 understory canopy | ||
---|---|---|---|---|
针叶树 coniferous trees | 阔叶树 broadleaved trees | 针叶树 coniferous trees | 阔叶树 broadleaved trees | |
基于ULS数据的离群值 outliers based on ULS data | 7 | 13 | 4 | 6 |
基于TLS数据的离群值 outliers based on TLS data | 1 | 8 | 1 | 1 |
ULS和TLS离群值交集 intersection of outliers using ULS and TLS | - | 3 | - | - |
Table 3
The comparisons of tree heights based on ULS and in situ data"
冠层 canopy | 树木类型 tree types | 株数 number of trees | σ(RMSE)/ m | σ(rRMSE)/ % | σ(Bias)/ m | σ(rBias)/ % | R |
---|---|---|---|---|---|---|---|
林冠上层 the overstory canopy | 针叶树 coniferous trees | 96 | 0.41 | 3.44 | -0.07 | -0.57 | 0.97 |
阔叶树 broadleaved trees | 134 | 0.77 | 6.12 | -0.34 | -2.73 | 0.97 | |
合计 total | 230 | 0.64 | 5.19 | -0.22 | -1.78 | 0.97 | |
林冠下层 the understory canopy | 针叶树 coniferous trees | 1 | - | - | - | - | - |
阔叶树 broadleaved trees | 14 | 0.80 | 10.14 | 0.47 | 6.04 | 0.90 | |
合计 total | 15 | 0.80 | 10.14 | 0.47 | 6.04 | 0.90 | |
总计 total | 针叶树 coniferous trees | 97 | 0.41 | 3.44 | -0.07 | -0.57 | 0.97 |
阔叶树 broadleaved trees | 148 | 0.77 | 6.23 | -0.31 | -2.45 | 0.98 | |
合计 total | 245 | 0.63 | 5.34 | -0.20 | -1.66 | 0.97 |
Table 4
The comparisons of tree heights based on TLS and in situ data"
冠层 canopy | 树木类型 tree types | 株数 number of trees | σ(RMSE)/ m | σ(rRMSE)/ % | σ(Bias)/ m | σ(rBias)/ % | R |
---|---|---|---|---|---|---|---|
林冠上层 the overstory canopy | 针叶树 coniferous trees | 101 | 0.67 | 5.71 | -0.37 | -3.23 | 0.96 |
阔叶树 broadleaved trees | 126 | 1.02 | 8.40 | -0.57 | -4.70 | 0.97 | |
合计 total | 227 | 1.02 | 7.75 | -0.85 | -6.50 | 0.95 | |
林冠下层 the understory canopy | 针叶树 coniferous trees | 28 | 0.23 | 3.21 | 0.14 | 2.00 | 0.97 |
阔叶树 broadleaved trees | 25 | 0.33 | 4.37 | 0.16 | 2.22 | 0.93 | |
合计 total | 53 | 0.28 | 3.83 | 0.16 | 2.18 | 0.96 | |
总计 total | 针叶树 coniferous trees | 129 | 0.60 | 5.62 | -0.27 | -2.51 | 0.98 |
阔叶树 broadleaved trees | 151 | 0.95 | 8.30 | -0.47 | -4.07 | 0.98 | |
合计 total | 280 | 0.81 | 7.26 | -0.37 | -3.36 | 0.98 |
Table 5
The comparisons of tree heights estimated based on ULS and TLS"
冠层 canopy | 树木类型 tree types | 株数 number of trees | σ(RMSE)/m | σ(rRMSE)/% | σ(Bias)/m | σ(rBias)/% | R |
---|---|---|---|---|---|---|---|
林冠上层 the overstory canopy | 针叶树 coniferous trees | 83 | 0.67 | 5.68 | -0.44 | -3.73 | 0.93 |
阔叶树 broadleaved trees | 98 | 0.71 | 5.82 | -0.42 | -3.50 | 0.96 | |
合计 total | 181 | 0.70 | 5.76 | -0.44 | -3.60 | 0.95 | |
林冠下层 the understory canopy | 针叶树 coniferous trees | 1 | - | - | - | - | - |
阔叶树 broadleaved trees | 9 | 0.61 | 7.44 | 0.05 | 0.69 | 0.97 | |
合计 total | 10 | 0.61 | 7.44 | 0.05 | 0.69 | 0.97 | |
总计 total | 针叶树 coniferous trees | 84 | 0.67 | 5.68 | -0.44 | -3.73 | 0.93 |
阔叶树 broadleaved trees | 107 | 0.71 | 5.86 | -0.41 | -3.41 | 0.96 | |
合计 total | 191 | 0.70 | 5.78 | -0.43 | -3.56 | 0.95 |
[1] |
ZHAO D H, KANE M, MARKEWITZ D, et al. Additive tree biomass equations for midrotation loblolly pine plantations[J]. For Sci, 2015, 61(4):613-623. DOI: 10.5849/forsci.14-193.
doi: 10.5849/forsci.14-193 |
[2] |
ZOU W T, ZENG W S, ZHANG L J, et al. Modeling crown biomass for four pine species in China[J]. Forests, 2015, 6(12):433-449. DOI: 10.3390/f6020433.
doi: 10.3390/f6020433 |
[3] |
LARJAVAARA M, MULLER-LANDAU H C, METCALF J. Measuring tree height: a quantitative comparison of two common field methods in a moist tropical forest[J]. Methods Ecol Evol, 2013, 4(9):793-801. DOI: 10.1111/2041-210x.12071.
doi: 10.1111/2041-210x.12071 |
[4] |
ZHEN Z, QUACKENBUSH L J, ZHANG L J. Trends in automatic individual tree crown detection and delineation: evolution of LiDAR data[J]. Remote Sens, 2016, 8(4):333. DOI: 10.3390/rs8040333.
doi: 10.3390/rs8040333 |
[5] |
ANDERSON K, GASTON K J. Lightweight unmanned aerial vehicles will revolutionize spatial ecology[J]. Front Ecol Environ, 2013, 11(3):138-146. DOI: 10.1890/120150.
doi: 10.1890/120150 |
[6] |
LIN Y, HYYPPÄ J, JAAKKOLA A. Mini-UAV-borne LIDAR for fine-scale mapping[J]. IEEE Geosci Remote Sens Lett, 2011, 8(3):426-430. DOI: 10.1109/LGRS.2010.2079913.
doi: 10.1109/LGRS.2010.2079913 |
[7] |
WALLACE L, LUCIEER A, WATSON C, et al. Development of a UAV-LiDAR system with application to forest inventory[J]. Remote Sens, 2012, 4(6):1519-1543. DOI: 10.3390/rs4061519.
doi: 10.3390/rs4061519 |
[8] |
HOPKINSON C, CHASMER L, YOUNG-POW C, et al. Assessing forest metrics with a ground-based scanning lidar[J]. Can J For Res, 2004, 34(3):573-583. DOI: 10.1139/x03-225.
doi: 10.1139/x03-225 |
[9] |
PFEIFER N, WNTERHALDER D. Modelling of tree cross sections from terrestrial laser scanning data with free-form curves[J]. Pro of Isp Wor Las Sca for For and Lan Ass, 2004, 36(8):76-81. DOI: 10.1109/TEST.2004.1387399.
doi: 10.1109/TEST.2004.1387399 |
[10] | 熊妮娜, 王佳. 基于地基激光雷达的活立木材积提取算法[J]. 林业工程学报, 2020, 5(6):143-148. |
XIONG N N, WANG J. Extratction algorithm for stand volume using ground-based laser scanner[J]. J For Eng, 2020, 5(6):143-148. DOI: 10.13360/j.issn.2096-1359.202001035.
doi: 10.13360/j.issn.2096-1359.202001035 |
|
[11] |
BREDE B, LAU A, BARTHOLOMEUS H, et al. Comparing Riegl Ricopter UAV LiDAR derived canopy height and DBH with terrestrial LiDAR[J]. Sensors, 2017, 17(10):2371. DOI: 10.3390/s17102371.
doi: 10.3390/s17102371 |
[12] | 李丹, 庞勇, 岳彩荣, 等. 基于TLS数据的单木胸径和树高提取研究[J]. 北京林业大学学报, 2012, 34:79-86. |
LI D, PANG Y, YUE C R, et al. Extraction of DBH and height of single tree based on TLS data[J]. Journal of Beijing Forestry University, 2012, 34:79-86. DOI: 10.13332/j.1000-1522.2012.04.027.
doi: 10.13332/j.1000-1522.2012.04.027 |
|
[13] |
BEYENE S M, HUSSIN Y A, KLOOSTERMAN H E, et al. Fo-rest inventory and aboveground biomass estimation with terrestrial LiDAR in the tropical forest of Malaysia[J]. Can J Remote Sens, 2020, 46(2):130-145. DOI: 10.1080/07038992.2020.1759036.
doi: 10.1080/07038992.2020.1759036 |
[14] |
GOODWIN N R, COOPS N C, CULVENOR D S. Assessment of forest structure with airborne LiDAR and the effects of platform altitude[J]. Remote Sens Environ, 2006, 103(2):140-152. DOI: 10.1016/j.rse.2006.03.003.
doi: 10.1016/j.rse.2006.03.003 |
[15] |
ANDERSEN H E, REUTEBUCH S E, MCGAUGHEY R J. A rigorous assessment of tree height measurements obtained using airborne lidar and conventional field methods[J]. Can J Remote Sens, 2006, 32(5):355-366. DOI: 10.5589/m06-030.
doi: 10.5589/m06-030 |
[16] |
SIBONA E, VITALI A, MELONI F, et al. Direct measurement of tree height provides different results on the assessment of LiDAR accuracy[J]. Forests, 2016, 8(1):7. DOI: 10.3390/f8010007.
doi: 10.3390/f8010007 |
[17] |
WANG Y S, PYÖRÄLÄ J, LIANG X L, et al. In situ biomass estimation at tree and plot levels: what did data record and what did algorithms derive from terrestrial and aerial point clouds in boreal forest[J]. Remote Sens Environ, 2019, 232:111309. DOI: 10.1016/j.rse.2019.111309.
doi: 10.1016/j.rse.2019.111309 |
[18] |
WALLACE L, MUSK R, LUCIEER A. An assessment of the repeatability of automatic forest inventory metrics derived from UAV-borne laser scanning data[J]. IEEE Trans Geosci Remote Sens, 2014, 52(11):7160-7169. DOI: 10.1109/TGRS.2014.2308208.
doi: 10.1109/TGRS.2014.2308208 |
[19] |
WANG Y S, LEHTOMÄKI M, LIANG L, et al. Is field-measured tree height as reliable as believed: a comparison study of tree height estimates from field measurement,airborne laser scanning and terrestrial laser scanning in a boreal forest[J]. ISPRS J Photogramm Remote Sens, 2019, 147:132-145. DOI: 10.1016/j.isprsjprs.2018.11.008.
doi: 10.1016/j.isprsjprs.2018.11.008 |
[20] |
VAGLIO LAURIN G, DING J Q, DISNEY M, et al. Tree height in tropical forest as measured by different ground, proximal, and remote sensing instruments, and impacts on above ground biomass estimates[J]. Int J Appl Earth Obs Geoinformation, 2019, 82:101899. DOI: 10.1016/j.jag.2019.101899.
doi: 10.1016/j.jag.2019.101899 |
[21] |
TANABE S I, TODA M J, VINOKUROVA A V. Tree shape, fo-rest structure and diversity of drosophilid community: comparison between boreal and temperate birch forests[J]. Ecol Res, 2001, 16(3):369-385. DOI: 10.1046/j.1440-1703.2001.00402.x.
doi: 10.1046/j.1440-1703.2001.00402.x |
[22] |
MIURA N, JONES S D. Characterizing forest ecological structure using pulse types and heights of airborne laser scanning[J]. Remote Sens Environ, 2010, 114(5):1069-1076. DOI: 10.1016/j.rse.2009.12.017.
doi: 10.1016/j.rse.2009.12.017 |
[23] | 郎春博, 贾鹤鸣, 邢致恺, 等. 基于改进粒子群算法的植物冠层图像分割[J]. 森林工程, 2019, 35(1):47-52. |
LANG C B, JIA H M, XING Z K, et al. Multi threshold segmentation of plant canopy image based on improved particle swarm optimization[J]. Forest Engineering, 2019, 35(1):47-52. | |
[24] | 胡文杰, 崔鸿侠, 王晓荣, 等. 三峡库区马尾松次生林林分结构特征分析[J]. 南京林业大学学报(自然科学版), 2019, 43(3):67-76. |
HU W J, CUI H X, WANG X R, et al. Structure characteristics of Pinus massoniana secondary forest in the Three Reservoir Area[J]. J Nanjing For Univ (Nat Sci Ed), 2019, 43(3):67-76. DOI: 10.3969/j.issn.1000-2006.201805075.
doi: 10.3969/j.issn.1000-2006.201805075 |
|
[25] | 胡传伟, 孙冰, 庄梅梅, 等. 深圳羊台山近自然风景林树种组成与垂直结构[J]. 南京林业大学学报(自然科学版), 2010, 34(4):112-116. |
HU C W, SUN B, ZHUANG M M, et al. Study on species composition and vertical structure of near-nature scenic forest in Mt.Yangtai, Shenzhen[J]. J Nanjing For Univ (Nat Sci Ed), 2010, 34(4):112-116. DOI: 10.3969/j.issn.1000-2006.2010.04.025.
doi: 10.3969/j.issn.1000-2006.2010.04.025 |
|
[26] |
ZIMBLE D A, EVANS D L, CARLSON G C, et al. Characterizing vertical forest structure using small-footprint airborne LiDAR[J]. Remote Sens Environ, 2003, 87(2/3):171-182. DOI: 10.1016/S0034-4257(03)00139-1.
doi: 10.1016/S0034-4257(03)00139-1 |
[27] | 赵静, 李静, 柳钦火. 森林垂直结构参数遥感反演综述[J]. 遥感学报, 2013, 17(4):697-716. |
ZHAO J, LI J, LIU Q H. Review of forest vertical structure parameter inversion based on remote sensing technology[J]. J Remote Sens, 2013, 17(4):697-716. DOI: 10.11834/jrs.20132183.
doi: 10.11834/jrs.20132183 |
|
[28] |
ZHAO K G, POPESCU S, NELSON R. Lidar remote sensing of forest biomass: a scale-invariant estimation approach using airborne lasers[J]. Remote Sens Environ, 2009, 113(1):182-196. DOI: 10.1016/j.rse.2008.09.009.
doi: 10.1016/j.rse.2008.09.009 |
[29] |
QIN H M, WANG C, XI X H, et al. Simulating the effects of the airborne lidar scanning angle, flying altitude, and pulse density for forest foliage profile retrieval[J]. Appl Sci, 2017, 7(7):712. DOI: 10.3390/app7070712.
doi: 10.3390/app7070712 |
[30] |
LEFSKY M A, COHEN W B, ACKER S A, et al. Lidar remote sensing of the canopy structure and biophysical properties of Douglas-fir western hemlock forests[J]. Remote Sens Environ, 1999, 70(3):339-361. DOI: 10.1016/S0034-4257(99)00052-8.
doi: 10.1016/S0034-4257(99)00052-8 |
[31] |
MALTAMO M, PACKALÉN P, YU X, et al. Identifying and quantifying structural characteristics of heterogeneous boreal forests using laser scanner data[J]. For Ecol Manag, 2005, 216(1/2/3):41-50. DOI: 10.1016/j.foreco.2005.05.034.
doi: 10.1016/j.foreco.2005.05.034 |
[32] |
ZHAO X Q, GUO Q H, SU Y J, et al. Improved progressive TIN densification filtering algorithm for airborne LiDAR data in forested areas[J]. ISPRS J Photogramm Remote Sens, 2016, 117:79-91. DOI: 10.1016/j.isprsjprs.2016.03.016.
doi: 10.1016/j.isprsjprs.2016.03.016 |
[33] |
SCHNABEL R, KLEIN R. Octree-based point-cloud compression[C]// Eur Sym Point-Based Gra, 2006: 111-120. DOI: 10.2312/SPBG/SPBG06/111-120.
doi: 10.2312/SPBG/SPBG06/111-120 |
[34] | 刘浩, 张峥男, 曹林. 机载激光雷达森林垂直结构剖面参数的沿海平原人工林林分特征反演[J]. 遥感学报, 2018, 22(5):872-888. |
LIU H, ZHANG Z N, CAO L. Estimating forest stand characteristics in a coastal plain forest plantation based on vertical structure profile parameters derived from ALS data[J]. J Remote Sens, 2018, 22(5):872-888. DOI: 10.11834/jrs.20187465.
doi: 10.11834/jrs.20187465 |
|
[35] |
LLOYD S. Least squares quantization in PCM[J]. IEEE Trans Inf Theory, 1982, 28(2):129-137. DOI: 10.1109/TIT.1982.1056489.
doi: 10.1109/TIT.1982.1056489 |
[36] |
BAZEZEW M N, HUSSIN Y A, KLOOSTERMAN E H. Integrating airborne LiDAR and terrestrial laser scanner forest parameters for accurate above-ground biomass/carbon estimation in Ayer Hitam tropical forest, Malaysia[J]. Int J Appl Earth Obs Geoinformation, 2018, 73:638-652. DOI: 10.1016/j.jag.2018.07.026.
doi: 10.1016/j.jag.2018.07.026 |
[37] |
LEFSKY M A, COHEN W B, ACKER S A, et al. Lidar remote sensing of forest canopy structure and related biophysical parameters at H. J. Andrews Experimental Forest, Oregon, USA[C]// IGARSS ‘98. Sensing and Managing the Environment. 1998 IEEE International Geoscience and Remote Sensing. Symposium Proceedings. (Cat. No. 98CH36174). July 6-10, 1998, Seattle, WA, USA. IEEE, 1998: 1252-1254. DOI: 10.1109/IGARSS.1998.691367.
doi: 10.1109/IGARSS.1998.691367 |
[38] | 李凤日. 测树学[M]. 4版. 北京: 中国林业出版社, 2019: 64. |
LI F R. Forest mensuration[M].4th ed. Beijing: China Forestry Publishing House, 2019: 64. |
[1] | GAO Xieyu, DONG Lihu, HAO Yuanshuo. Effects of thinning on Larix olgensis plantation stem form based on TLS [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(6): 85-94. |
[2] | GAI Junpeng, CHEN Dongsheng, JIA Weiwei, WANG Zheng. Developing height growth model of Larix kaempferi based on genetic and climate effects [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(4): 51-60. |
[3] | LU Wenyan, DONG Lingbo, TIAN Yuan, WANG Shashan, QU Xuanyi, WEI Wei, LIU Zhaogang. Modelling height-diameter curves of main species for natural forests based on species composition in Greater Khingan Mountains, northeast China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(4): 157-165. |
[4] | GAO Yu, LI Jing, LIU Yang, WU Yahan, GONG Jiaxing, XIN Qirui. Application of structural equation model in growth of Larix gmelinii stand [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(1): 38-46. |
[5] | DONG Lingbo, LIU Zhaogang. Forest health assessments and multi-scale conversion methods [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(3): 206-216. |
[6] | WANG Chu, GU Chenrui, JIANG Jing, LIU Guifeng. Effects of gibberellin on early growth and fruiting of potted Betula platyphylla clones [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2019, 43(5): 16-22. |
[7] | DUAN Guangshuang,LI Xuedong, FENG Yan, FU Liyong. Generalized nonlinear mixed-effects crown base height model of Larix principis-rupprechtii natural secondary forests [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2018, 42(02): 170-176. |
[8] | QIU Sai, XING Yanqiu, TIAN Jing, DING Jianhua. Estimation of forest canopy density based on ICESat-GLAS waveform data [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2016, 40(05): 99-106. |
[9] | ZHOU Keyu, WANG Yunzhen, LI Ji, JIANG Guangyu, XU Aijun. A study of tree measurement systems based on Android platform [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2016, 40(04): 95-100. |
[10] | ZHANG Qian, JU Weimin, YANG Fengting, CAO Lin, FENG Yongkang. Implementation and analysis of multi-angle hyperspectral observation system for forest canopy [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2016, 40(03): 101-107. |
[11] | GAO Yanping, DING Fangjun, PAN Mingliang, ZHOU Fengjiao, WU Peng. Carbon sequestration and distribution characteristics in natural secondary forests of Betula luminifera in west Guizhou [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2014, 38(04): 51-56. |
[12] | WANG Linghui1, WU Guoxin1, SHI Fujun2, QIN Wuming1,YU Haoguang2. Effects of different afforestation density on growth of Acacia mangium×A.auriculaef Ormis [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2009, 33(02): 134-. |
[13] | FAN Shi xiang, CHENG Yin-cai, WANG Zhong fa, BAI Qing-jun. New Model of Forest Canopy Interception to Rainfall on Watershed Stored-full Runoff Theory [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2007, 31(02): 93-96. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||