Characteristics of the soil aggregate and its organic carbon in different Larix gmelinii forest types

WANG Bing, ZHANG Pengjie, ZHANG Qiuliang

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2021, Vol. 45 ›› Issue (3) : 15-24.

PDF(1715 KB)
PDF(1715 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2021, Vol. 45 ›› Issue (3) : 15-24. DOI: 10.12302/j.issn.1000-2006.202009067

Characteristics of the soil aggregate and its organic carbon in different Larix gmelinii forest types

Author information +
History +

Abstract

【Objective】An aggregate is the basic unit of soil structure, and its protection of organic carbon is an important mechanism for soil carbon pool stabilization. The effects of forest types on the distribution, stability and organic carbon content of soil aggregates in Larix gmelinii forest were studied through the field investigation and laboratory analysis. 【Method】In the Larix gmelinii virgin forest in Greater Khingan Mountains in Inner Mongolia, 28 plots of 30 m× 30 m were set up according to different forest types (grass-Larix gmelinii, Ledum palustre-Larix gmelinii, and Rhododendron simsii-Larix gmelinii). The soil physicochemical indexes, soil aggregate content and organic carbon content of different particle sizes were determined by stratified samplings at 0-10 cm, ≥10-20 cm, ≥20-40 cm and ≥40-60 cm below the ground. Based on One-way ANOVA, the correlation analysis and stepwise regression analysis, the differences of soil aggregate characteristic values among different forest types and the effects of soil physicochemical indexes on distribution, stability and organic carbon of soil aggregates were analyzed, and the dominant factors that had significant influences on soil aggregates of different forest types were selected. 【Result】①The soil aggregate content in Larix gmelinii forest was the highest in particle sizes ≥0.250-2.000 mm and the content in the surface layer (0-10 cm) was significantly higher than that in the other layers. The macroaggregate content followed the order: Rhododendron simsii-Larix gmelinii > grass-Larix gmelinii > Ledum palustre-Larix gmelinii, and the forest type had a significant impact on the aggregate content of each particle size in the soil layer below 20 cm. ②The soil aggregate stability in the surface layer (≥0-10 cm) of Larix gmelinii forest was higher than that of the other layers with no significant difference among different forest types. The significant differences among different forest types mainly occurred in the layer of ≥40-60 cm, and the soil aggregate stability of Rhododendron simsii-Larix gmelinii forest was better than the other two forest types. ③ The organic carbon content of different particle sizes soil aggregates in different forest types was in the following order: (≥0.250-2.000 mm) aggregates, (<0.053 mm) aggregates, and (≥0.053-0.250 mm) aggregates. The organic carbon content of soil aggregates in the Ledum palustre-Larix gmelinii forest was the highest; the organic carbon content of soil aggregates in different forest types decreased as the soil layer depth increased, and its decline rate decreased as the particle size decreased and had obvious surface aggregation characteristics. ④The soil total organic carbon was the common dominant factor of ≥0.250-2.000 mm and <0.053 mm aggregates of the three forest types, while the dominant factors of ≥0.053-0.250 mm aggregates were significantly different across the forest types. 【Conclusion】The soil aggregates and their organic carbon contents of Larix gmelinii forest were mainly macroaggregates, and the forest type had a certain effect on the particle size distribution and stability of soil aggregates. The content of ≥0.250-2.000 mm aggregates in Rhododendron simsii-Larix gmelinii forest was the highest, and the content of <0.250 mm aggregates and the organic carbon content of soil aggregates in different particle sizes were the highest in the Ledum palustre-Larix gmelinii forest. The soil physicochemical indexes had influences on the formation and stability of soil aggregates, and the dominant factors of soil aggregates in different forest types were different. The organic matter was the main binding agent of ≥0.250-2.000 mm aggregates, while metal oxides were in favor of <0.250 mm aggregate formation. Acid soil with high soil moisture and nutrient levels are conducive to the formation of soil macroaggregates and the stability of soil structure in Larix gmelinii forest.

Key words

Larix gmelinii forest / forest type / soil aggregate / particle size / organic carbon / stability / soil physicochemical properties

Cite this article

Download Citations
WANG Bing , ZHANG Pengjie , ZHANG Qiuliang. Characteristics of the soil aggregate and its organic carbon in different Larix gmelinii forest types[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2021, 45(3): 15-24 https://doi.org/10.12302/j.issn.1000-2006.202009067

References

[1]
于海艳, 宫汝宁, 周娅, 等. 北京八达岭地区4种人工林土壤团聚体稳定性及有机碳特征[J]. 水土保持学报, 2015,29(5):162-166.
YU H Y, GONG R N, ZHOU Y, et al. Characteristics of soil aggregate stability and soil organic carbon under four typical artificial plantations in Beijing Badaling Mountain area[J]. J Soil Water Conserv, 2015,29(5):162-166.DOI: 10.13870/j.cnki.stbcxb.2015.05.030.
[2]
SIX J, BOSSUYT H, DEGRYZE S, et al. A history of research on the link between (micro)aggregates,soil biota,and soil organic matter dynamics[J]. Soil Tillage Res, 2004,79(1):7-31.DOI: 10.1016/j.still.2004.03.008.
[3]
CHUNG H, GROVE J H, SIX J. Indications for soil carbon saturation in a temperate agroecosystem[J]. Soil Sci Soc Am J, 2008,72(4):1132-1139.DOI: 10.2136/sssaj2007.0265.
[4]
赵友朋, 孟苗婧, 张金池, 等. 凤阳山主要林分类型土壤团聚体及其稳定性研究[J]. 南京林业大学学报(自然科学版), 2018,42(5):84-90.
ZHAO Y P, MENG M J, ZHANG J C, et al. Study on the composition and stability of soil aggregates of the main forest stands in Fengyang Mountain,Zhejiang Province[J]. J Nanjing For Univ (Nat Sci Ed), 2018,42(5):84-90.DOI: 10.3969/j.issn.1000-2006.201801013.
[5]
苑亚茹, 李娜, 邹文秀, 等. 典型黑土区不同生态系统土壤团聚体有机碳分布特征[J]. 生态学报, 2018,38(17):6025-6032.
YUAN Y R, LI N, ZOU W X, et al. Distribution characteristics of organic carbon in aggregates of soils of three ecosystems in typical Mollisols of Northeast China[J]. Acta Ecol Sin, 2018,38(17):6025-6032.DOI: 10.5846/stxb201710281931.
[6]
毛艳玲, 杨玉盛, 邢世和, 等. 土地利用方式对土壤水稳性团聚体有机碳的影响[J]. 水土保持学报, 2008,22(4):132-137.
MAO Y L, YANG Y S, XING S H, et al. Effects of land use on soil organic carbon in water-stable aggregates[J]. J Soil Water Conserv, 2008,22(4):132-137.DOI: 10.3321/j.issn:1009-2242.2008.04.028.
[7]
董莉丽. 不同土地利用类型下土壤水稳性团聚体的特征[J]. 林业科学, 2011,47(4):95-100.
DONG L L. Characteristics of soil water stable aggregates under different land-use types[J]. Sci Silvae Sin, 2011,47(4):95-100.DOI: 10.11707/j.1001-7488.20110415.
[8]
任荣秀, 杜章留, 孙义亨, 等. 华北低丘山地不同土地利用方式下土壤团聚体及其有机碳分布特征[J]. 生态学报, 2020,40(19):1-9.
REN R X, DU Z L, SUN Y H, et al. Soil aggregate and its organic carbon distribution characteristics at different land use patterns in hilly areas of north China[J]. Acta Ecol Sin, 2020,40(19):1-9.DOI: 10.5846/stxb201906211313.
[9]
谢贤健, 张继. 巨桉人工林下土壤团聚体稳定性及分形特征[J]. 水土保持学报, 2012,26(6):175-179.
XIE X J, ZHANG J. Soil aggregates and fractal features under different styles of Eucalyptus grandis plantations[J]. J Soil Water Conserv, 2012,26(6):175-179.DOI: 10.13870/j.cnki.stbcxb.2012.06.042.
[10]
胡昭, 张懿, 郭建. 黄土丘陵区典型林地土壤团聚体稳定性评价[J]. 人民黄河, 2020,42(8):104-108.
HU Z, ZHANG Y, GUO J. Evaluation of soil aggregates stability with typical forest lands in gullied rolling loess area[J]. Yellow River, 2020,42(8):104-108.DOI: 10.3969/j.issn.1000-1379.2020.08.021.
[11]
张旭冉, 张卫青. 土壤团聚体研究进展[J]. 北方园艺, 2020(21):131-137.
ZHANG X R, ZHANG W Q. Research progress of soil aggregates[J]. North Hort, 2020(21):131-137.DOI: 10.11937/bfyy.20200149.
[12]
吴金明, 刘永红, 李学垣, 等. 我国几种地带性土壤无机胶体的表面电荷特性[J]. 土壤学报, 2002,39(2):177-183.
WU J M, LIU Y H, LI X H, et al. Surface charge characteristics of soil colloids in China[J]. Acta Pedol Sin, 2002,39(2):177-183.DOI: 10.3321/j.issn:0564-3929.2002.02.005.
[13]
胡国成, 章明奎. 氧化铁对土粒强胶结作用的矿物学证据[J]. 土壤通报, 2002,33(1):25-27.
HU G C, ZHANG M K. Mineralogical evidence for strong cementation of soil particles by iron oxides[J]. Chin J Soil Sci, 2002,33(1):25-27.DOI: 10.3321/j.issn:0564-3945.2002.01.007.
[14]
田慧. 大兴安岭不同类型冻土区土壤有机碳及团聚体分布特征研究[D]. 呼和浩特:内蒙古农业大学, 2018.
TIAN H. Study on the distribution characteristics of soil organic carbon and aggregates in different permafrost regions of Daxing’anling[D]. Hohhot:Inner Mongolia Agricultural University, 2018.
[15]
刘霞, 蔡恒明, 赵梅芳. 大兴安岭地区不同森林沼泽对土壤团聚体有机碳的影响[J]. 林业勘察设计, 2020,49(3):96-117.
LIU X, CAI H M, ZHAO M F. Effects of different forest marshes on soil aggregate organic carbon in the Greater Xing’an Mountains[J]. Forest Invest Design, 2020,49(3):96-117.DOI: 10.3969/j.issn.1673-4505.2020.03.037.
[16]
任清胜, 辛颖, 赵雨森. 重度火烧对大兴安岭落叶松天然林土壤团聚体有机碳和黑碳的影响[J]. 北京林业大学学报, 2016,38(2):29-36.
REN Q S, XIN Y, ZHAO Y S. Impact of severe burning on organic carbon and black carbon in soil aggregates in natural Larix gmelinii forest of Great Xing’an Mountains[J]. J Beijing For Univ, 2016,38(2):29-36.DOI: 10.13332/j.1000-1522.20150098.
[17]
吕琳. 抚育间伐对兴安落叶松天然林土壤团聚体、活性有机碳及微生物的影响[D]. 哈尔滨:东北林业大学, 2017.
LV L. Effects of thinning on soil aggregate,active organic carbon and microorganism of Larix gmelinii natural forest[D]. Harbin:Northeast Forestry University, 2017.
[18]
李金博, 朱道光, 崔福星, 等. 寒温带落叶松林不同林型土壤有机碳含量及相关性分析[J]. 国土与自然资源研究, 2015(5):72-75.
LI J B, ZHU D G, CUI F X, et al. Analysis on the relationship between soil organic carbon content and soil organic carbon in different leaves of larch in Alpine Region[J]. Territ Nat Resour Study, 2015(5):72-75.DOI: 10.3969/j.issn.1003-7853.2015.05.022.
[19]
王彦军. 兴安落叶松林下土壤物理化学性质的研究[D]. 呼和浩特:内蒙古农业大学, 2011.
WANG Y J. Study on soil physical and chemical properties of Dahurian larch forest[D]. Hohhot:Inner Mongolia Agricultural University, 2011.
[20]
李小梅, 张秋良. 环境因子对兴安落叶松林生态系统CO2通量的影响[J]. 北京林业大学学报, 2015,37(8):31-39.
LI X M, ZHANG Q L. Impact of climate factors on CO2 flux characteristics in a Larix gmelinii forest ecosystem[J]. J Beijing For Univ, 2015,37(8):31-39.DOI: 10.13332/j.1000-1522.20150020.
[21]
PIERZYNSKI G M. Methods of phosphorus analysis for soils,sediments,residuals,and waters[M]. 2nd Ed. Raleigh:North Carolina State University, 2009.
[22]
SIX J, ELLIOTT E T. Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture[J]. Soil Biol Biochem, 2000,32:2099-2103.DOI: 10.1016/S0038-0717(00)00179-6.
[23]
ELLIOTT E T. Aggregate structure and carbon,nitrogen,and phosphorus in native and cultivated soils[J]. Soil Sci Soc Am J, 1986,50(3):627-633.DOI: 10.2136/sssaj1986.03615995005000030017x.
[24]
王富华, 吕盛, 黄容, 等. 缙云山4种森林植被土壤团聚体有机碳分布特征[J]. 环境科学, 2019,40(3):1504-1511.
WANG F H, S, HUANG R, et al. Distribution of organic carbon in soil aggregates from four kinds of forest vegetation on Jinyun Mountain[J]. Environ Sci, 2019,40(3):1504-1511.DOI: 10.13227/j.hjkx.201807097.
[25]
BARTHES B, ROOSE E. Aggregate stability as an indicator of susceptibility to runoff and erosion; validation at several levels[J]. Catena, 2002,47(2):133-149.DOI: 10.1016/s0341-8162(01)00180-1.
[26]
华娟, 赵世伟, 张扬, 等. 云雾山草原区不同植被恢复阶段土壤团聚体活性有机碳分布特征[J]. 生态学报, 2009,29(9):4613-4619.
HUA J, ZHAO S W, ZHANG Y, et al. Distribution characteristics of labile organic carbon in soil aggregates in different stages of vegetation restoration of grassland in Yunwu Mountain[J]. Acta Ecol Sin, 2009,29(9):4613-4619.DOI: 10.3321/j.issn:1000-0933.2009.09.003.
[27]
聂富育, 杨万勤, 杨开军, 等. 四川盆地西缘4种人工林土壤团聚体及有机碳特征[J]. 应用与环境生物学报, 2017,23(3):542-547.
NIE F Y, YANG W Q, YANG K J, et al. Soil aggregates and organic carbon in four plantations on the western edge of the Sichuan Basin[J]. Chin J Appl Environ Biol, 2017,23(3):542-547.DOI: 10.3724/SP.J.1145.2016.07003.
[28]
陈恩凤, 关连珠, 汪景宽, 等. 土壤特征微团聚体的组成比例与肥力评价[J]. 土壤学报, 2001,38(1):49-53.
CHEN E F, GUAN L Z, WANG J K, et al. Compositional proportion of soil characteristic microaggregates and soil fertility evaluation[J]. Acta Pedol Sin, 2001,38(1):49-53.DOI: 10.3321/j.issn:0564-3929.2001.01.007.
[29]
彭新华, 张斌, 赵其国. 土壤有机碳库与土壤结构稳定性关系的研究进展[J]. 土壤学报, 2004,41(4):618-623.
PENG X H, ZHANG B, ZHAO Q G. A review on relationship between soil organic carbon pools and soil structure stability[J]. Acta Pedol Sin, 2004,41(4):618-623.DOI: 10.3321/j.issn:0564-3929.2004.04.019.
[30]
MIKHA M M, RICE C W. Tillage and manure effects on soil and aggregate-associated carbon and nitrogen[J]. Soil Sci Soc Am J, 2004,68(3):809-816.DOI: 10.2136/sssaj2004.8090.
[31]
罗友进, 魏朝富, 李渝, 等. 土地利用对石漠化地区土壤团聚体有机碳分布及保护的影响[J]. 生态学报, 2011,31(1):257-266.
LUO Y J, WEI C F, LI Y, et al. Effects of land use on distribution and protection of organic carbon in soil aggregates in Karst rocky desertification area[J]. Acta Ecol Sin, 2011,31(1):257-266.
[32]
权伟, 戎建涛, 郑方东. 乌岩岭不同林分土壤有机碳含量及分布特征[J]. 南京林业大学学报(自然科学版), 2018,42(4):198-202.
QUAN W, RONG J T, ZHENG F D. Distribution of soil organic carbon among different forest types in Wuyanling Nature Reserve[J]. J Nanjing For Univ (Nat Sci Ed), 2018,42(4):198-202.DOI: 10.3969/j.issn.1000-2006.201710031.
[33]
王心怡, 周聪, 冯文瀚, 等. 不同林龄杉木人工林土壤团聚体及其有机碳变化特征[J]. 水土保持学报, 2019,33(5):126-131.
WANG X Y, ZHOU C, FENG W H, et al. Changes of soil aggregates and its organic carbon in Chines fir plantations with different forest ages[J]. J Soil Water Conserv, 2019,33(5):126-131.DOI: 10.13870/j.cnki.stbcxb.2019.05.019.
[34]
刘艳, 查同刚, 王伊琨, 等. 北京地区栓皮栎和油松人工林土壤团聚体稳定性及有机碳特征[J]. 应用生态学报, 2013,24(3):607-613.
LIU Y, ZHA T G, WANG Y K, et al. Soil aggregate stability and soil organic carbon characteristics in Quercus variabilis and Pinus tabulaeformis plantations in Beijing area[J]. Chin J Appl Ecol, 2013,24(3):607-613.DOI: 10.13287/j.1001-9332.2013.0201.
[35]
薛彦飞, 薛文, 张树兰, 等. 长期不同施肥对塿土团聚体胶结剂的影响[J]. 植物营养与肥料学报, 2015,21(6):1622-1632.
XUE Y F, XUE W, ZHANG S L, et al. Effects of long-term fertilization regimes on changes of aggregate cementing agent of Lou Soil[J]. Plant Nutr Fertil Sci, 2015,21(6):1622-1632.DOI: 10.11674/zwyf.2015.0630.
[36]
祁金虎. 辽东山区天然次生栎林土壤有机碳含量及其与理化性质的关系[J]. 水土保持学报, 2017,31(4):135-140,171.
QI J H. Contents of soil organic carbon and its relations with physicochemical properties of secondary natural oak forests in eastern mountain area of Liaoning Province[J]. J Soil Water Conserv, 2017,31(4):135-140,171.DOI: 10.13870/j.cnki.stbcxb.2017.04.022.
[37]
戴万宏, 黄耀, 武丽, 等. 中国地带性土壤有机质含量与酸碱度的关系[J]. 土壤学报, 2009,46(5):851-860.
DAI W H, HUANG Y, WU L, et al. Relationships between soil organic matter content (SOM) and pH in topsoil of zonal soils in China[J]. Acta Pedol Sin, 2009,46(5):851-860.DOI: 10.3321/j.issn:0564-3929.2009.05.013.
[38]
ERIKSEN J, LEFROY R D B, BLAIR G J, et al. Physical protection of soil organic S studied using acetylacetone extraction at various intensities of ultrasonic dispersion[J]. Soil Biol Biochem, 1995,27(8):1005-1010.DOI: 10.1016/0038-0717(95)00031-9.
[39]
王小红, 杨智杰, 刘小飞, 等. 中亚热带山区土壤不同形态铁铝氧化物对团聚体稳定性的影响[J]. 生态学报, 2016,36(9):2588-2596.
WANG X H, YANG Z J, LIU X F, et al. Effects of different forms of Fe and Al oxides on soil aggregate stability in mid-subtropical mountainous area of southern China[J]. Acta Ecol Sin, 2016,36(9):2588-2596.DOI: 10.5846/stxb201408021542.

RIGHTS & PERMISSIONS

Copyright reserved © 2021
PDF(1715 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/