Leaf stomatal morphological characteristics and their effects on transpiration for two tree species in Maolan Karst area,Guizhou Province

CHENG Juan, DING Fangjun, TAN Zhenghong, LIAO Liguo, ZHOU Ting, CUI Yingchun

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2021, Vol. 45 ›› Issue (5) : 125-132.

PDF(1700 KB)
PDF(1700 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2021, Vol. 45 ›› Issue (5) : 125-132. DOI: 10.12302/j.issn.1000-2006.202010005

Leaf stomatal morphological characteristics and their effects on transpiration for two tree species in Maolan Karst area,Guizhou Province

Author information +
History +

Abstract

【Objective】 Rocky desertification is a serious environmental problem in southwest China. Research on tree transpiration and its stomatal regulation should benefit vegetation restoration and forest management in the Karst area.【Method】 We synchronously performed field measurements of sap flow by using a thermal diffusion probe and collected microclimate data. The leaf samples were collected and taken to the laboratory for drying treatment, and subsequently, stomatal structure analysis was performed under an electron microscope, including that of the evergreen Dendropanax inflatus and deciduous Alangium platanifolium.【Result】 ① There were similar sap flow (FS) diurnal patterns for the deciduous and evergreen species; overall, the sap flow rate was higher in the deciduous species A. platanifolium [(585.25±53.46) g/h] than in the evergreen species D. inflatus [(384.83±39.12) g/h] during the observation period, indicating that the transpiration of the evergreen tree species was stronger than that of the deciduous tree species. ② Stomata density was higher in the deciduous species [(1 005.08±80.99) individual/mm 2] than in the evergreen species [(237.16±21.67) individual/mm2] (P < 0.05, df=48, F=7.08). However, there were no significant differences in stomatal openness, stomatal conductance, and stomatal apparatus size between the two species (P > 0.05, df=48, F=2.65). Additionally, there was a significant negative relationship between stomata density and stomata openness and conductance (P < 0.05, df=9, F=14.00; P < 0.05, df=9, F=17.12); low stomata density evergreen trees have longer stomata and openness compared to that of high stomata density deciduous trees.③ The stem sap flow of the two tree species was significantly positively related to stomatal density (P < 0.01, df=48, F=16.03; P < 0.01, df=48, F=32.10), showed that the transpiration was related to low the stomatal density. Meanwhile, the stomatal density was significantly positively correlated with solar radiation intensity (Rn) (P < 0.05, df=48, F=7.66; P < 0.01, df=48, F=47.18). The stomatal conductance of the deciduous A. platanifolium was significantly positively correlated with Rn (P < 0.05, df=48, F=13.06). The stomatal density of the evergreen D. inflatus was significantly negatively correlated with air temperature (Ta) (P < 0.05, df=48, F=5.02). A significant positive relationship between stomatal conductance and Ta (P < 0.05, df=48, F=6.32) was significantly positively correlated with Ta and Rn (P < 0.01, df=48, F=17.20; P < 0.01, df=48, F=14.81), indicated that Rn was the main environmental factor affects the stomatal morphology of the two tree species.【Conclusion】 Both environmental variables and changes in stomatal morphology play a role in regulating tree transpiration. Environmental conditions were more responsive in the evergreen tree D. inflatus, lowering stomatal density. The difference in stomatal density and stomatal morphology, which is affected by environmental factors, is the reason behind the transpiration difference. Species with high stomatal density are more suitable for growth in complex Karst habitats.

Key words

Karst area / Dendropanax inflatus / Alangium platanifolium / stomatal morpholoy / stomatal density / transpiration

Cite this article

Download Citations
CHENG Juan , DING Fangjun , TAN Zhenghong , et al . Leaf stomatal morphological characteristics and their effects on transpiration for two tree species in Maolan Karst area,Guizhou Province[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2021, 45(5): 125-132 https://doi.org/10.12302/j.issn.1000-2006.202010005

References

[1]
文林琴, 栗忠飞. 2004—2016年贵州省石漠化状况及动态演变特征[J]. 生态学报, 2020, 40(17):5928-5939.
WEN L Q, LI Z F. Evolution characteristics of rocky desertification during 2004-2016 in Guizhou Province,China[J]. Acta Ecologica Sinica, 2020, 40(17):5928-5939.DOI: 10.5846/stxb201906251343.
[2]
张俊佩. 贵州石漠化地区主要造林树种耐旱特性及适应性评价[D]. 北京:中国林业科学研究院 2009.
ZHANG J P. The evaluation on characteristics of drought resistance and adaptability of main trees in rocky desertification district of Guizhou Province[D]. Beijing:Chinese Academy of Forestry, 2009,DOI: 10.7666/d.D602844.
[3]
容丽, 王世杰, 俞国松, 等. 荔波喀斯特森林4种木本植物水分来源的稳定同位素分析[J]. 林业科学, 2012, 48(7):14-22.
RONG L, WANG S J, YU G S, et al. Stable isotope analysis of water sources of four woody species in the Libo Karst forest[J]. Scientia Silvae Sinicae, 2012, 48(7):14-22.DOI: 10.11707/j.1001-7488.20120703.
[4]
刘长成, 刘玉国, 郭柯. 四种不同生活型植物幼苗对喀斯特生境干旱的生理生态适应性[J]. 植物生态学报, 2011, 35(10):1070-1082.
Abstract
喀斯特石漠化是我国西南喀斯特地区最严重的生态环境问题, 生境干旱是限制该地区植物生长的主要因素之一, 掌握喀斯特植被不同演替阶段不同生活型植物对干旱胁迫的适应策略有助于提高植被恢复的成功率。通过人工模拟4种干旱强度, 测定叶片水势、气体交换、叶绿素荧光、光合色素含量、渗透调节物质浓度、抗氧化酶活性以及生物量, 研究了喀斯特地区4种不同生活型植物幼苗对干旱胁迫的适应策略。这4种植物为常绿灌木火棘(Pyracantha fortuneana)、落叶灌木小果蔷薇(Rosa cymosa)、常绿乔木猴樟(Cinnamomum bodinieri)和落叶乔木圆果化香树(Platycarya longipes)。结果表明: 随着干旱程度的加深, 4种植物幼苗的叶片水势、光合能力、叶绿素含量、生物量增长、叶重比(LMR)、叶面积比(LAR)和比叶面积(SLA)逐渐下降, 而热耗散(NPQ)、类胡萝卜素与叶绿素含量比值、丙二醛含量和根重比(RMR)逐渐上升; 圆果化香树和猴樟的水分利用效率(A<sub>n</sub>/g<sub>s</sub>)、渗透调节物质浓度和抗氧化酶活性呈先升高后降低的趋势, 而火棘和小果蔷薇的A<sub>n</sub>/g<sub>s</sub>、脯氨酸含量和超氧化物歧化酶活性呈上升趋势。严重干旱下, 火棘和小果蔷薇幼苗的叶片水势和叶绿素含量下降较少, 具有较高的光合能力和生物量增长, 这主要是由于它们具有较低的SLA和LAR、较高的NPQ和A<sub>n</sub>/g<sub>s</sub>以及较高的渗透调节能力和抗氧化保护能力。中度干旱下, 猴樟幼苗叶片水势下降很少, LMR和LAR也较高, 脯氨酸含量和抗氧化酶活性非常高。但在严重干旱下, 其叶片水势、LMR、LAR和生物量增长大幅度下降, 最大光化学效率和光合速率也非常低, 渗透调节能力与抗氧化酶活性大幅度下降至正常水平以下。水分好的条件下, 圆果化香树幼苗具有较高的RMR以吸收充足的水分, 具有较高的LAR和叶绿素含量, 保证了生物量的大量积累。然而, 干旱胁迫致使其生物量大幅度下降, 主要是由于LMR、LAR、气体交换和叶绿素含量的大量下降以减少蒸腾面积、水分散失和对光能的吸收。研究结果表明, 火棘、小果蔷薇和猴樟幼苗主要采用耐旱策略, 其中猴樟抗严重干旱的能力较弱; 圆果化香树幼苗对干旱胁迫更为敏感, 主要采取避旱策略。
LIU C C, LIU Y G, GUO K. Ecophysiological adaptations to drought stress of seedlings of four plant species with different growth forms in Karst habitats[J]. Journal of Plant Ecology, 2011, 35(10):1070-1082.DOI: 10.3724/SP.J.1258.2011.01070.
[5]
TANG Y K, WEN X F, SUN X M, et al. The limiting effect of deep soilwater on evapotranspiration of a subtropical coniferous plantation subjected to seasonal drought[J]. Advances in Atmospheric Sciences, 2014, 31(2):385-395.DOI: 10.1007/s00376-013-2321-y.
[6]
高春娟, 夏晓剑, 师恺, 等. 植物气孔对全球环境变化的响应及其调控防御机制[J]. 植物生理学报, 2012, 48(1):19-28.
GAO C J, XIA X J, SHI K, et al. Response of stomata to global climate changes and the underlying regulation mechanism of stress responses[J]. Plant Physiology Journal, 2012, 48(1):19-28.DOI: 10.13592/j.cnki.ppj.2012.01.013.
[7]
HETHERINGTON A M, WOODWARD F I. The role of stomata in sensing and driving environmental change[J]. Nature, 2003, 424(6951):901-908.DOI: 10.1038/nature01843.
[8]
CHEN Z H, CHEN G, DAI F, et al. Molecular evolution of grass stomata[J]. Trends in Plant Science, 2017, 22(2):124-139.DOI: 10.1016/j.Tplants.2016.09.005.
[9]
MÜLLER H M, SCHÄFER N, BAUER H, et al. The desert plant Phoenix dactylifera closes stomata via nitrate-regulated SLAC1 anion channel[J]. New Phytologist, 2017, 216(1):150-162.DOI: 10.1111/nph.14672.
[10]
CAINE R S, CHATER C C, KAMISUGI Y, et al. An ancestral stomatal patterning module revealed in the non-vascular land plant Physcomitrella patens[J]. Development, 2016, 143(18):3306-3314.DOI: 10.1242/dev.135038.
[11]
RUDALL P J, CHEN E D, CULLEN E. Evolution and development of monocot stomata[J]. American Journal of Botany, 2017, 104(8):1122-1141.DOI: 10.3732/ajb.1700086.
[12]
解斌, 李俊豪, 景淑怡, 等. 2种梨砧木叶片光合与气孔形态特征研究[J]. 经济林研究, 2019, 37(2):126-133.
XIE B, LI J H, JING S Y, et al. Characteristics of photosynjournal and stomatal morphology in leaves from two species of pear rootstocks[J]. Nonwood Forest Research, 2019, 37(2):126-133.DOI: 10.14067/j.cnki.1003-8981.2019.02.018.
[13]
韦海建, 杨惠敏, 赵亮. 遮荫环境对白三叶草气孔和光合特性的影响[J]. 草业科学, 2007, 24(10):94-97.
WEI H J, YANG H M, ZHAO L. The effects of shadowing on stomatal and photosynthetic characteristics of Trifolium repens[J]. Pratacultural Science, 2007, 24(10):94-97.DOI: 10.3969/j.issn.1001-0629.2007.10.019.
[14]
PRICE C A. LEAF GUI:analyzing the geometry of veins and areoles using image segmentation algorithms[J]. Methods in Molecular Biology, 2012, 918:41-49.DOI: 10.1007/978-1-61779-995-2_4.
[15]
BERTOLINO L T, CAINE R S, GRAY J E. Impact of stomatal density and morphology on water-use efficiency in a changing world[J]. Frontiers in Plant Science, 2019, 10:225.DOI: 10.3389/fpls.2019.00225.
[16]
FORD C R, HUBBARD R M, KLOEPPEL B D, et al. A comparison of sap flux-based evapotranspiration estimates with catchment-scale water balance[J]. Agricultural & Forest Meteorology, 2007, 145(3/4):176-185.DOI: 10.1016/j.agrformet.2007.04.010.
[17]
吴鹏, 杨文斌, 崔迎春, 等. 喀斯特区天峨槭(Acer wangchii)树干液流特征及其与环境因子的相关分析[J]. 生态学报, 2017, 37(22):7552-7567.
WU P, YANG W B, CUI Y C, et al. Characteristics of sap flow and correlation analysis with environmental factors of Acer wangchii in the Karst area[J]. Acta Ecologica Sinica, 2017, 37(22):7552-7567.DOI: 10.5846/stxb201609251934.
[18]
赵文君, 舒德远, 李成龙, 等. 喀斯特森林宜昌润楠蒸腾耗水规律及其与环境因子的关系[J]. 中南林业科技大学学报, 2019, 39(1):108-115.
ZHAO W J, SHU D Y, LI C L, et al. Relationships among transpiration,water consumption and environmental factors of Machilus ichangensis in Karst forest[J]. Journal of Central South University of Forestry & Technology, 2019, 39(1):108-115.DOI: 10.14067/j.cnki.1673-923x.2019.01.017.
[19]
李成龙, 刘延惠, 丁访军, 等. 茂兰喀斯特森林小果润楠蒸腾特征及影响因素[J]. 南京林业大学学报(自然科学版), 2019, 43(3):51-58.
LI C L, LIU Y H, DING F J, et al. Transpiration characteristics and influencing factors of the dominant species of Machilus microcarpa in Maolan Karst forest[J]. J Nanjing For Univ(Nat Sci Ed), 2019, 43(3):51-58.DOI: 10.3969/j.issn.1000-2006.201808018.
[20]
KATUL G G, OREN R, MANZONI S, et al. Evapotranspiration: a process driving mass transport and energy exchange in the soil-plant-atmosphere-climate system[J]. Reviews of Geophysics, 2012, 50(3).DOI: 10.1029/2011RG000366.
[21]
GRANIER A. A new method of sap flow measurement in tree stems[J]. Annales Desences Forestieres, 1985, 42(2):193-200.DOI: 10.1051/forest:19850204.
[22]
陈立欣, 张志强, 李湛东, 等. 大连4种城市绿化乔木树种夜间液流活动特征[J]. 植物生态学报, 2010, 34(5):535-546.
Abstract
夜间液流有助于树木物质运输及其体内水分的补充(water recharge), 它不仅对植物的生长发育具有重要的生理生态学意义, 而且对大尺度植物蒸腾耗水的估算可能产生重要影响。2008年6月1日至8月31日, 以热扩散探针(thermal dissipation probe, TDP)技术对大连市劳动公园内的雪松(Cedrus deodara)、大叶榉(Zelkova schneideriana)、丝棉木(Euonymus bungeanus)和水杉(Metasequoia glyptostroboides) 4种乔木树种的不同径阶样木树干边材液流进行了测定, 并结合同步土壤水分与小气候观测结果分析了树木夜间(18:00至次日5:00)液流特征。实验结果表明, 树木普遍存在可感夜间液流, 夜间液流总量占观测期液流总量的比例在样木个体间呈现显著差异, 其变化范围为0.44%–75.96%; 观测期雨天夜间液流波动活跃, 显著高于晴天,其单日夜间液流总量可持平, 甚至高于日间液流。相关分析表明: 水汽压亏缺(vapor pressure deficit, VPD)和风速的变化与夜间蒸腾显著相关, 它们能够较好地解释液流变化(R2 > 0.6); 树木夜间液流主要用于夜间蒸腾和自身水分补充, 夜间液流现象主要发生在前半夜, 后半夜液流平稳且极接近0, 夜间液流量与相应的日间流量(R2 = 0.356, p = 0.00)及胸径(R2 Spearman > 0.80) 显著相关, 说明植物本身的结构和生理特点也是影响树木夜间液流的重要因子。单株样木夜间液流占全天总蒸腾量的比例低于14.4%, 如不考虑夜间液流的影响, 根据日间液流通过尺度扩展推算的森林生态系统年蒸腾量可能偏低。
CHEN L X, ZHANG Z Q, LI Z D, et al. Nocturnal sap flow of four urban greening tree species in Dalian,Liaoning Province,China[J]. Journal of Plant Ecology, 2010, 34(5):535-546.DOI: 10.3773/j.issn.1005-264x.2010.05.007.
[23]
NIINEMETS L O, CESCATTI A, RODEGHIERO M, et al. Leaf internal diffusion conductance limits photosynjournal more strongly in older leaves of mediterranean evergreen broad-leaved species[J]. Plant Cell & Environment, 2005, 28(12).DOI: 10.1111/j.1365-3040.2005.01392.X.
[24]
李润唐, 张映南, 田大伦. 柑橘类植物叶片的气孔研究[J]. 果树学报, 2004, 21(5):419-424.
LI R T, ZHANG Y N, TIAN D L. Studies on the stomata of citrus plant leaves[J]. Journal of Fruit Science, 2004, 21(5):419-424.DOI: 10.3969/j.issn.1009-9980.2004.05.007.
[25]
MAHERALI H, REID C D, POLLEY H W, et al. Stomatal acclimation over a subambient to elevated CO2 gradient in a C3/C4 grassland[J]. Plant Cell & Environment, 2002, 25(4):557-566.DOI: 10.1046/j.1365-3040.2002.00832.X.
[26]
李芳兰, 包维楷. 植物叶片形态解剖结构对环境变化的响应与适应[J]. 植物学通报, 2005, 40(S1):118-127.
LI F L, BAO W K. Responses of the morphological and anatomical structure of the plant leaf to environmental change[J]. Acta botany Sinica, 2005, 40(S1):118-127.
[27]
吴志勇, 侍恒, 何海, 等. 岔巴沟流域植被变化特征及其对水沙的影响[J]. 水资源保护, 2020, 36(1):31-37.
WU Z Y, SHI H, HE H, et al. Characteristics of vegetation change and impact on runoff and sediment in Chabagou Watershed[J]. Water Resources Protection, 2020, 36(1):31-37.DOI: 10.3880/j.issn.1004-6933.2020.01.005.
[28]
ALARCÓN J J, ORTUÑO M F, NICOLÁS E, et al. Improving water-use efficiency of young lemon trees by shading with aluminised-plastic nets[J]. Agricultural Water Management, 2006, 82(3):387-398.DOI: 10.1016/j.agwat.2005.08.003.
[29]
JEŽÍK M, BLAŽENEC M, LETTS M G, et al. Assessing seasonal drought stress response in Norway spruce (Picea abies (L.) Karst.) by monitoring stem circumference and sap flow[J]. Ecohydrology, 2015, 8(3):378-386.DOI: 10.1002/eco.1536.
[30]
张治安, 杨福, 陈展宇, 等. 菰叶片净光合速率日变化及其与环境因子的相互关系[J]. 中国农业科学, 2006, 39(3):502-509.
ZHANG Z A, YANG F, CHEN Z Y, et al. Relationship between diurnal changes of net photosynthetic rate and environmental factors in leaves of Zizania latifolia[J]. Scientia Agricultura Sinica, 2006, 39(3):502-509.DOI: 10.3321/j.issn:0578-1752.2006.03.010.
[31]
朱燕华, 康宏樟, 刘春江. 植物叶片气孔性状变异的影响因素及研究方法[J]. 应用生态学报, 2011, 22(1):250-256.
ZHU Y H, KANG H Z, LIU C J. Affecting factors of plant stomatal traits variability and relevant investigation methods[J]. Chinese Journal of Applied Ecology, 2011, 22(1):250-256.
[32]
CASSON S, GRAY J E. Influence of environmental factors on stomatal development[J]. New Phytologist, 2008, 178(1).DOI: 10.1111/j.1469-8137.2007.02351.x.
[33]
BERTOLINO L T, CAINE R S, GRAY J E. Impact of stomatal density and morphology on water-use efficiency in a changing world[J]. Frontiers in Plant Science, 2019, 10.DOI: 10.3389/fpls.2019.00225.
[34]
BRODRIBB T J, FEILD T S. Leaf hydraulic evolution led a surge in leaf photosynthetic capacity during early angiosperm diversification[J]. Ecology Letters, 2010, 13(2):175-183.DOI: 10.1111/j.1461-0248.2009.01410.X.
[35]
BRODRIBB T J, HOLBROOK N M. Stomatal closure during leaf dehydration,correlation with other leaf physiological traits[J]. Plant Physiology, 2003, 132(4):2166-2173.DOI: 10.1104/pp.103.023879.
[36]
罗春梅. 几种无机元素及植物生长调节剂对小麦叶片气孔分化及密度的影响[J]. 植物生理学通讯, 1982(6):24-27.
LUO C M. Effects of several inorganic elements and plant growth regulators on wheat of leaf stomatal differentiation and density[J]. Plant Physiology Communications, 1982(6):24-27.
[37]
万福绪, 张金池. 黔中喀斯特山区的生态环境特点及植被恢复技术[J]. 南京林业大学学报(自然科学版), 2003, 27(1):45-49.
WAN F X, ZHANG J C. Ecological characteristics and vegetation rehabilitation techniques in the Karst mountain areas of Guizhou Province[J]. J of Nanjing For Univ(Nat Sci Ed), 2003, 27(1):45-49.DOI: 10.3969/j.issn.1000-2006.2003.01.011.
[38]
DRIESEN E, ENDE W, PROFT MD, et al. Influence of environmental factors light,CO2,temperature,and relative humidity on stomatal opening and development: a review[J]. Agronomy, 2020, 10(12).DOI: 10.3390/agronomy10121975.
[39]
SALVUCCI M E, CRAFTS-BRANDNER S J. Mechanism for deactivation of rubisco under moderate heat stress[J]. Physiologia Plantarum, 2004, 122(4).DOI: 10.1111/j.1399-3054.2004.00419.x.
[40]
THOMAS P W, WOODWARD F I, QUICK W P. Systemic irradiance signalling in tobacco[J]. New Phytologist, 2003,DOI: 10.1046/j.1469-8137.2003.00954.x.
[41]
ALINIAEIFARD S, MALCOLM MATAMOROS P, VAN MEETEREN U. Stomatal malfunctioning under low VPD conditions:Induced by alterations in stomatal morphology and leaf anatomy or in the ABA signaling?[J]. Physiologia Plantarum, 2014, 152(4):688-699.DOI: 10.1111/ppl.12216.
[42]
FANOURAKIS D, BOURANIS D, GIDAY H, et al. Improving stomatal functioning at elevated growth air humidity:a review[J]. Journal of Plant Physiology, 2016, 207:51-60.DOI: 10.1016/j.jplph.2016.10.003.

RIGHTS & PERMISSIONS

Copyright reserved © 2021.
PDF(1700 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/