Application of CRISPR/Cas technique in woody plant improvement

HOU Jing, MAO Jinyan, ZHAI Hui, WANG Jie, YIN Tongming

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2021, Vol. 45 ›› Issue (6) : 24-30.

PDF(1573 KB)
PDF(1573 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2021, Vol. 45 ›› Issue (6) : 24-30. DOI: 10.12302/j.issn.1000-2006.202010017

Application of CRISPR/Cas technique in woody plant improvement

Author information +
History +

Abstract

Long breeding periods and scarce germplasm resources have become the main bottlenecks in woody plant improvement. Recently, the CRISPR/Cas system has been developed into a precision site-directed editing technology that has been widely used in the breeding of woody plants such as Populus spp., Malus spp., Citrus spp., Vitis vinifera and Cassava spp.. The yield, quality, biotic- and abiotic-stress resistance, and other traits of woody plants have been significantly improved by genome editing, achieving the fixation of excellent genotypes within a single generation. This approach has accelerated the breeding process of woody plants and improves their breeding efficiency. Here, we summarize the application of CRISPR/Cas technology to woody plants, analyzing existing problems and future development trends. This review aims to provide a useful reference for gene function research and improvement of woody plants.

Key words

CRISPR/Cas / genome editing / molecular breeding / woody plants / breed improvement

Cite this article

Download Citations
HOU Jing , MAO Jinyan , ZHAI Hui , et al . Application of CRISPR/Cas technique in woody plant improvement[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2021, 45(6): 24-30 https://doi.org/10.12302/j.issn.1000-2006.202010017

References

[1]
万志兵, 戴晓港, 尹佟明 林木遗传育种基础研究热点述评[J]. 林业科学, 2012, 48(2), 48:150-154.
WAN Z B, DAI X G, YIN T M. Review on the hot topics of the basic studies for forest genetics and breeding[J]. Sci Silvae Sin, 2012, 48(2), 48:150-154.
[2]
BEYING N, SCHMIDT C, PACHER M, et al. CRISPR-Cas9-mediated induction of heritable chromosomal translocations in Arabidopsis[J]. Nat Plants, 2020, 6(6):638-645.DOI: 10.1038/s41477-020-0663-x.
[3]
SCHWARTZ C, LENDERTS B, FEIGENBUTZ L, et al. CRISPR-Cas9-mediated 75.5-Mb inversion in maize[J]. Nat Plants, 2020, 6(12):1427-1431.DOI: 10.1038/s41477-020-00817-6.
[4]
单奇伟, 高彩霞 植物基因组编辑及衍生技术最新研究进展[J]. 遗传, 2015, 37(10), 37:953-973.
SHAN Q W, GAO C X. Research progress of genome editing and derivative technologies in plants[J]. Hereditas, 2015, 37(10), 37:953-973.DOI: 10.16288/j.yczz.15-156.
[5]
PUCHTA H. Using CRISPR/Cas in three dimensions: towards synthetic plant genomes,transcriptomes and epigenomes[J]. Plant J, 2016, 87(1):5-15.DOI: 10.1111/tpj.13100.
[6]
SHAN S, SOLTIS P S, SOLTIS D E, et al. Considerations in adapting CRISPR/Cas9 in nongenetic model plant systems[J]. Appl Plant Sci, 2020, 8(1):e11314.DOI: 10.1002/aps3.11314.
[7]
CHEN K, WANG Y, ZHANG R, et al. CRISPR/cas genome editing and precision plant breeding in agriculture[J]. Annu Rev Plant Biol, 2019, 70:667-697.DOI: 10.1146/annurev-arplant-050718-100049.
[8]
VAN ZEIJL A, WARDHANI T A K, SEIFI KALHOR M, et al. CRISPR/Cas9-mediated mutagenesis of four putative symbiosis genes of the tropical tree Parasponia andersonii reveals novel phenotypes[J]. Front Plant Sci, 2018, 9:284.DOI: 10.3389/fpls.2018.00284.
[9]
FAN D, LIU T, LI C, et al. Efficient CRISPR/Cas9-mediated targeted mutagenesis in Populus in the first generation[J]. Sci Rep, 2015, 5:12217.DOI: 10.1038/srep12217.
[10]
NISHITANI C, HIRAI N, KOMORI S, et al. Efficient genome editing in apple using a CRISPR/Cas9 system[J]. Sci Rep, 2016, 6:31481.DOI: 10.1038/srep31481.
[11]
ODIPIO J, ALICAI T, INGELBRECHT I, et al. Efficient CRISPR/Cas9 genome editing of phytoene desaturase in Cassava[J]. Front Plant Sci, 2017, 8:1780.DOI: 10.3389/fpls.2017.01780.
[12]
NAKAJIMA I, BAN Y, AZUMA A, et al. CRISPR/Cas9-mediated targeted mutagenesis in grape[J]. PLoS One, 2017, 12(5):e0177966.DOI: 10.1371/journal.pone.0177966.
[13]
REN C, GUO Y, KONG J, et al. Knockout of VvCCD8 gene in grapevine affects shoot branching[J]. BMC Plant Biol, 2020, 20(1):41.DOI: 10.1186/s12870-020-2263-3.
[14]
FINLAYSON S A. Arabidopsis Teosinte Branched1-like 1 regulates axillary bud outgrowth and is homologous to monocot Teosinte Branched1[J]. Plant Cell Physiol, 2007, 48(5):667-677. DOI: 10.1093/pcp/pcm044.
[15]
MUHR M, PAULAT M, AWWANAH M, et al. CRISPR/Cas9-mediated knockout of Populus BRANCHED1 and BRANCHED2 orthologs reveals a major function in bud outgrowth control[J]. Tree Physiol, 2018, 38(10):1588-1597.DOI: 10.1093/treephys/tpy088.
[16]
田敏, 夏琼梅, 李纪元. 植物的次生生长及其分子调控[J]. 遗传, 2007, 29(11):1324-1330.
TIAN M, XIA Q M, LI J Y. The secondary growth in plant and its molecular regulation[J]. Hereditas, 2007, 29(11):1324-1330.DOI: 10.16288/j.yczz.2007.11.006.
[17]
TAKATA N, AWANO T, NAKATA M T, et al. Populus NST/SND orthologs are key regulators of secondary cell wall formation in wood fibers,phloem fibers and xylem ray parenchyma cells[J]. Tree Physiol, 2019, 39(4):514-525.DOI: 10.1093/treephys/tpz004.
[18]
YANG L, ZHAO X, RAN L, et al. PtoMYB156 is involved in negative regulation of phenylpropanoid metabolism and secondary cell wall biosynjournal during wood formation in poplar[J]. Sci Rep, 2017, 7:41209.DOI: 10.1038/srep41209.
[19]
ZHOU X H, JACOBS T B, XUE L J, et al. Exploiting SNPs for biallelic CRISPR mutations in the outcrossing woody perennial Populus reveals 4-coumarate:CoA ligase specificity and redundancy[J]. New Phytol, 2015, 208(2):298-301.DOI: 10.1111/nph.13470.
[20]
段硕. 柑橘易感溃疡病基因CsLOB1功能的研究[D]. 重庆:西南大学, 2017.
DUAN S. Dissecting the function of susceptibility gene CsLOB1 of Citrus bacterial canker disease[D]. Chongqing:Southwest University, 2017.
[21]
JIA H, ZHANG Y, ORBOVI $\acute{C}_{v}$, et al. Genome editing of the disease susceptibility gene CsLOB1 in Citrus confers resistance to Citrus canker[J]. Plant Biotechnol J, 2017, 15(7):817-823.DOI: 10.1111/pbi.12677.
[22]
PENG A, CHEN S, LEI T, et al. Engineering canker-resistant plants through CRISPR/Cas9-targeted editing of the susceptibility gene CsLOB1 promoter in Citrus[J]. Plant Biotechnol J, 2017, 15(12):1509-1519.DOI: 10.1111/pbi.12733.
[23]
JIA H G, ORBOVIC V, WANG N. CRISPR-LbCas12a-mediated modification of Citrus[J]. Plant Biotechnol J, 2019, 17(10):1928-1937.DOI: 10.1111/pbi.13109.
[24]
郑小波. 疫霉菌及其研究技术[M]. 北京: 中国农业出版社, 1997.
ZHENG X B. Phytophthora and its research technology[M]. Beijing: Chinese Agriculture Press, 1997.
[25]
SHI Z, ZHANG Y, MAXIMOVA S N, et al. TcNPR3 from Theobroma cacao functions as a repressor of the pathogen defense response[J]. BMC Plant Biol, 2013, 13:204.DOI: 10.1186/1471-2229-13-204.
[26]
FISTER A S, LANDHERR L, MAXIMOVA S N, et al. Transient expression of CRISPR/Cas9 machinery targeting TcNPR3 enhances defense response in Theobroma cacao[J]. Front Plant Sci, 2018, 9:268.DOI: 10.3389/fpls.2018.00268.
[27]
童蕴慧, 纪兆林, 徐敬友, 等. 灰霉病生物防治研究进展[J]. 中国生物防治, 2003, 19(3):131-135.
TONG Y H, JI Z L, XU J Y, et al. Research progress on biological control of gray mold[J]. Chin J Biol Control, 2003, 19(3):131-135.DOI: 10.16409/j.cnki.2095-039x.2003.03.009.
[28]
黄幸, 丁峰, 彭宏祥, 等. 植物WRKY转录因子家族研究进展[J]. 生物技术通报, 2019, 35(12):129-143.
Abstract
WRKY转录因子是植物中最大的转录调控因子家族之一,是调控植物许多生物过程信号网络的组成部分。WKRY转录因子具有多种生物学功能,在植物的生长发育和衰老、非生物和生物胁迫等过程中发挥着重要的作用。在DNA水平上,WRKY转录因子可与靶基因启动子中的W-box TTGAC(C/T)结合,通过自调节或交叉调节激活或抑制下游基因的表达调控其反应。在蛋白水平上,WRKY转录因子可以与多种蛋白相互作用,包括MAP激酶、组蛋白去乙酰化酶、抗性R蛋白、多种转录因子等,调节植物的生长发育或各种应激反应。对WRKY转录因子的结构特征、生物学功能、调控机制和网络等方面进行了综述,有助于更加全面了解其在植物中的作用。
HUANG X, DING F, PENG H X, et al. Research progress on family of plant WRKY transcription factors[J]. Biotechnol Bull, 2019, 35(12):129-143.DOI: 10.13560/j.cnki.biotech.bull.1985.2019-0626.
WRKY transcription factors are one of the largest families of transcriptional regulators in plants and form an integral part of signaling webs that modulates many plant processes. WKRY transcription factors have a variety of biological functions and play an important role in plant growth,development and senescence,abiotic and biotic stress and so on. At DNA level,WRKY transcription factors can bind to W-box TTGAC(C/T)in the promoter of its target genes and activate or inhibit the expression of downstream genes to regulate their response by self-regulation or cross-regulation. At protein level,WRKY transcription factors can regulate plant growth and development or various stress responses by interacting with a variety of proteins,including MAP kinases,histone deacetylase,resistant R proteins,and a variety of transcription factors. This paper reviews the research progress on the structure,biological function,regulatory mechanism and network of WRKY transcription factors,which will help us to understand their roles in plants more comprehensively.
[29]
WANG X, TU M, WANG D, et al. CRISPR/Cas9-mediated efficient targeted mutagenesis in grape in the first generation[J]. Plant Biotechnol J, 2018, 16(4):844-855.DOI: 10.1111/pbi.12832.
[30]
FEECHAN A, JERMAKOW A M, TORREGROSA L, et al. Identification of grapevine MLO gene candidates involved in susceptibility to powdery mildew[J]. Funct Plant Biol, 2008, 35(12):1255.DOI: 10.1071/fp08173.
[31]
PESSINA S, LENZI L, PERAZZOLLI M, et al. Knockdown of MLO genes reduces susceptibility to powdery mildew in grapevine[J]. Hortic Res, 2016, 3:16016.DOI: 10.1038/hortres.2016.16.
[32]
MALNOY M, VIOLA R, JUNG M H, et al. DNA-free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins[J]. Front Plant Sci, 2016, 7:1904.DOI: 10.3389/fpls.2016.01904.
[33]
GOMEZ M A, LIN Z D, MOLL T, et al. Simultaneous CRISPR/Cas9-mediated editing of cassava eIF4E isoforms nCBP-1 and nCBP-2 reduces cassava brown streak disease symptom severity and incidence[J]. Plant Biotechnol J, 2019, 17(2):421-434.DOI: 10.1111/pbi.12987.
[34]
鲁松. 干旱胁迫对植物生长及其生理的影响[J]. 江苏林业科技, 2012, 39(4):51-54.
LU S. Effects of drought stress on plant growth and physiological traits[J]. J Jiangsu For Sci Technol, 2012, 39(4):51-54.DOI: 10.3969/j.issn.1001-7380.2012.04.015.
[35]
BRUNNER I, HERZOG C, DAWES M A, et al. How tree roots respond to drought[J]. Front Plant Sci, 2015, 6:547.DOI: 10.3389/fpls.2015.00547.
[36]
ZHOU Y, ZHANG Y, WANG X, et al. Root-specific NF-Y family transcription factor,PdNF-YB21,positively regulates root growth and drought resistance by abscisic acid-mediated indoylacetic acid transport in Populus[J]. New Phytol, 2020, 227(2):407-426.DOI: 10.1111/nph.16524.
[37]
LI S, LIN Y J, WANG P, et al. The AREB1 transcription factor influences histone acetylation to regulate drought responses and tolerance in Populus trichocarpa[J]. Plant Cell, 2019, 31(3):663-686.DOI: 10.1105/tpc.18.00437.
[38]
JIAO Y N, WICKETT N J, AYYAMPALAYAM S, et al. Ancestral polyploidy in seed plants and angiosperms[J]. Nature, 2011, 473(7345):97-100.DOI: 10.1038/nature09916.
[39]
FRIEDLAND A E, TZUR Y B, ESVELT K M, et al. Heritable genome editing in C. elegans via a CRISPR-Cas9 system[J]. Nat Methods, 2013, 10(8):741-743.DOI: 10.1038/nmeth.2532.
[40]
ZETSCHE B, GOOTENBERG J S, ABUDAYYEH O O, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system[J]. Cell, 2015, 163(3):759-771.DOI: 10.1016/j.cell.2015.09.038.
[41]
COX D B T, GOOTENBERG J S, ABUDAYYEH O O, et al. RNA editing with CRISPR-Cas13[J]. Science, 2017, 358(6366):1019-1027.DOI: 10.1126/science.aaq0180.
[42]
HARRINGTON L B, BURSTEIN D, CHEN J S, et al. Programmed DNA destruction by miniature CRISPR-Cas14 enzymes[J]. Science, 2018, 362(6416):839-842.DOI: 10.1126/science.aav4294.
[43]
LU Y, YE X, GUO R, et al. Genome-wide targeted mutagenesis in rice using the CRISPR/Cas9 system[J]. Mol Plant, 2017, 10(9):1242-1245.DOI: 10.1016/j.molp.2017.06.007.
[44]
MENG X, YU H, ZHANG Y, et al. Construction of a genome-wide mutant library in rice using CRISPR/Cas9[J]. Mol Plant, 2017, 10(9):1238-1241.DOI: 10.1016/j.molp.2017.06.006.
[45]
ZHANG R, LIU J, CHAI Z, et al. Generation of herbicide tolerance traits and a new selectable marker in wheat using base editing[J]. Nat Plants, 2019, 5(5):480-485.DOI: 10.1038/s41477-019-0405-0.
[46]
TIAN S, JIANG L, CUI X, et al. Engineering herbicide-resistant watermelon variety through CRISPR/Cas9-mediated base-editing[J]. Plant Cell Rep, 2018, 37(9):1353-1356.DOI: 10.1007/s00299-018-2299-0.
[47]
QIN L, LI J Y, WANG Q Q, et al. High-efficient and precise base editing of C·G to T·A in the allotetraploid cotton (Gossypium hirsutum) genome using a modified CRISPR/Cas9 system[J]. Plant Biotechnol J, 2020, 18(1):45-56.DOI: 10.1111/pbi.13168.
[48]
LI C, ZHANG R, MENG X, et al. Targeted,random mutagenesis of plant genes with dual cytosine and adenine base editors[J]. Nat Biotechnol, 2020, 38(7):875-882.DOI: 10.1038/s41587-019-0393-7.
[49]
KUZMA J, GRIEGER K. Community-led governance for gene-edited crops[J]. Science, 2020, 370(6519):916-918.DOI: 10.1126/science.abd1512.
[50]
MA X, ZHANG X, LIU H, et al. Highly efficient DNA-free plant genome editing using virally delivered CRISPR-Cas9[J]. Nat Plants, 2020, 6(7):773-779.DOI: 10.1038/s41477-020-0704-5.
[51]
毛金燕, 翟惠, 王洁, 等. CRISPR/Cas技术及其作用机理[J/OL]. 分子植物育种:1-13.(2020 -11-18)[2021-02-27].
MAO J Y, ZHAI H, WANG J, et al. CRISPR/Cas technology and its action mechanisms[J/OL]. Molecular Plant Breeding:1-13 [2021-02-27]. http://kns.cnki.net/kcms/detail/46.1068.S.20201118.1049.004.html.

RIGHTS & PERMISSIONS

Copyright reserved © 2021.
PDF(1573 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/