The prediction model of moisture content of young Aquilaria sinensis leaves based on RFE_RF algorithm

WANG Tian, WANG Xuefeng, LIU Jiazheng

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (4) : 177-184.

PDF(2675 KB)
PDF(2675 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (4) : 177-184. DOI: 10.12302/j.issn.1000-2006.202010043

The prediction model of moisture content of young Aquilaria sinensis leaves based on RFE_RF algorithm

Author information +
History +

Abstract

【Objective】 To solve the problems of difficult selections of high-dimensional variables and low accuracy of random forest algorithm in tree water prediction model, this paper studies the fusion algorithm based on recursive feature elimination (RFE) and random forest (RF), constructs the estimation model of visible light images and leaf water content of young A. sinensis, explores the water conditions suitable for the growth of young Aquilaria sinensis, and provides a feasible reference method for realizing the nondestructive monitoring of water deficit degree of A. sinensis seedlings. 【Method】 Taking two-years-old precious tree species of A. sinensis as the research object, the visible light images of young A. sinensis under four different water gradients were obtained by camera, 15 image features were extracted, the recursive feature elimination method was used to screen the optimal image feature subset of agallochum leaves, and then the prediction model of water content of A. sinensis leaves was constructed combined with RF algorithm. Finally, the RFE_RF model is compared with the conventional RF and least square support vector machine (LSSVM) to test the feasibility of the model. Three features of standard red light value (INR), saturation (S) and rectangularity (ER) of young A. sinensis leaf images were screened out by recursive feature elimination and random forest fusion (RFE_RF) algorithm, and used as the model independent variables. 【Result】 The results showed that compared with severe flooding stress, young A. sinensis was more sensitive to long-term severe drought stress, and the drought time exceeded two weeks, the leaves of the seedlings were severely damaged, threatening the growth of A. sinensis; the optimum leaf water growth range of A. sinensis was 50%-65%, moderately increase moisture, which is conducive to the growth of A. sinensis. The false alarm rate and accuracy of the prediction model constructed based on the RFE_RF fusion algorithm reached 88.64%, 85.31%, 14.39% and 91.62%, respectively, which were better than the LSSVM model; the sensitivity is increased by 3.34%, the specificity is increased by 10.87%, the false alarm rate is decreased by 36.83%, and the precision is increased by 13.39%. 【Conclusion】 The model of Aquilaria sinensis leaf color, shape characteristics and water content established by RFE_RF solves the problem of high-dimensional variable selections in the random forest process, improves the accuracy of RF in the forest moisture prediction model, and realizes the analysis of leaf water content of Aquilaria sinensis seedlings. The non-destructive estimation and diagnosis provide new ideas for accurate water management and management of precious tree species.

Key words

Aquilaria sinensis / recursive feature elimination(RFE) / random forest (RF) algorithm / moisture content estimation

Cite this article

Download Citations
WANG Tian , WANG Xuefeng , LIU Jiazheng. The prediction model of moisture content of young Aquilaria sinensis leaves based on RFE_RF algorithm[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2022, 46(4): 177-184 https://doi.org/10.12302/j.issn.1000-2006.202010043

References

[1]
宋晓琛, 王西洋, 杨光, 等. 无机盐与激素混合对土沉香结香的诱导[J]. 林业科学, 2020, 56(8):121-130.
SONG X C, WANG X Y, YANG G, et al. Mechanism of agarwood formation under the induction of both inorganic salts and hormones[J]. Sci Silvae Sin, 2020, 56(8):121-130.DOI:10.11707/j.1001-7488.20200814.
[2]
张沛健, 尚秀华, 吴志华. 基于图像处理技术的5种红树林叶片形态特征及叶绿素相对含量的估测[J]. 热带作物学报, 2020, 41(3):496-503.
ZHANG P J, SHANG X H, WU Z H. Morphological characteristics of leaves and estimation of relative chlorophyll content in five species of mangrove based on image processing technology[J]. Chin J Trop Crops, 2020, 41(3):496-503.DOI: 10.3969/j.issn.1000-2561.2020.03.011.
[3]
MIGLIACCIO K W, SCHAFFER B, CRANE J H, et al. Plant response to evapotranspiration and soil water sensor irrigation scheduling methods for Papaya production in south Florida[J]. Agric Water Manag, 2010, 97(10):1452-1460.DOI:10.1016/j.agwat.2010.04.012.
[4]
KACIRA M, LING P P, SHORT T H. Machine vision extracted plant movement for early detection of plant water stress[J]. Trans ASAE, 2002, 45(4): 1147-1153.DOI:10.13031/2013.9923.
[5]
AHMAD U, MARDISON S, TJAHJOHUTOMO R, et al. Development of automatic grading machine prototype for Citrus using image processing[J]. Aust J Agric Eng, 2010, 1(5):165-169.
[6]
ZAKALUK R, SRI RANJAN R. Artificial neural network modelling of leaf water potential for potatoes using RGB digital images: a greenhouse study[J]. Potato Res, 2006, 49(4):255-272.DOI:10.1007/s11540-007-9021-x.
[7]
劳东青, 李发永, 曹洪武. 图像去噪及分割算法在枣叶含水率估算中的影响研究[J]. 节水灌溉, 2018(6):1-6.
LAO D Q, LI F Y, CAO H W. Influence of image denoising and image segmentation on estimating leaf water content of jujube[J]. Water Sav Irrigation, 2018(6):1-6.DOI: 10.3969/j.issn.1007-4929.2018.06.002.
[8]
张娟利, 宋朝阳, 韩文霆, 等. 基于RGB图像处理的烟叶水分无损检测方法研究[J]. 中国农机化学报, 2019, 40(5):62-68.
ZHANG J L, SONG Z Y, HAN W T, et al. Nondestructive testing of tobacco leaf water status by using digital RGB images[J]. J Chin Agric Mech, 2019, 40(5)62-68.DOI:10.13733/j.jcam.issn.2095-5553.2019.05.12.
[9]
LI L, USTIN S L, RIANO D. Retrieval of fresh leaf fuel moisture content using genetic algorithm partial least squares (GA-PLS) modeling[J]. IEEE Geosci Remote Sens Lett, 2007, 4(2):216-220.DOI:10.1109/LGRS.2006.888847.
[10]
江朝晖, 杨春合, 周琼, 等. 基于图像特征的越冬期冬小麦冠层含水率检测[J]. 农业机械学报, 2015, 46(12):260-267.
JIANG Z H, YANG C H, ZHOU Q. et al. Detection of canopy water content of winter wheat during wintering period based on image features[J]. Trans Chin Soc Agric Mach, 2015, 46(12): 260-267.DOI: 10.6041/j.issn.1000-1298.2015.12.035.
[11]
VESALI F, GHARIBKHANI M, KOMARIZADEH M H. An approach to estimate moisture content of apple with image processing method[J]. Aust J Crop Sci, 2011, 5:111-115.
[12]
顾金梅, 吴雪梅, 龙曾宇, 等. 基于BP神经网络的烟叶颜色自动分级研究[J]. 中国农机化学报, 2016(4):110-114.
GU J M, WU X M, LONG Z Y, et al. Automatic classification research on tobacco leaf color based on BP neural network[J]. J Chin Agric Mech, 2016(4):110-114.
[13]
陈珠琳, 王雪峰. 水胁迫下多角度幼龄檀香图像颜色变化分析及含水率反演[J]. 应用生态学报, 2019, 30(8):2639-2646.
CHEN Z L, WANG X F. Color change analysis and water content inversion of young sandalwood in multi-angle under water stress[J]. Chin J Appl Ecol, 2019, 30(8)2639-2646.DOI:10.13287/j.1001-9332.201908.024.
[14]
张海威, 张飞, 张贤龙, 等. 光谱指数的植被叶片含水量反演[J]. 光谱学与光谱分析, 2018, 38(5):1540-1546.
ZHANG H W, ZHANG F, ZHANG X L, et al. Inversion of vegetation leaf water content based on spectral index[J]. Spectrosc Spectr Anal, 2018, 38(5):1540-1546.
[15]
宋镇, 姬长英, 张波. 基于高光谱技术融合图像信息的杏鲍菇干燥过程中含水率检测[J]. 江苏农业学报, 2019, 35(2):436-444.
SONG Z, JI C Y, ZHANG B. Visualized determination of moisture content in Pleurotus eryngii during drying process based on hyperspectral imaging technology[J]. Jiangsu J Agric Sci, 2019, 35(2):436-444.DOI:10.3969/j.issn.1000-4440.2019.02.026.
[16]
陈珠琳, 王雪峰, 孙汉中. 基于可见光-近红外图像的幼龄檀香全磷含量诊断[J]. 北京林业大学学报, 2019, 41(2):88-96.
CHEN Z L, WANG X F, SUN H Z. Diagnosis of total phosphorus content in young sandalwood based on visible light and near infrared images[J]. J Beijing For Univ, 2019, 41(2):88-96.DOI:10.13332/j.1000-1522.20180214.
[17]
孙媛媛. 基于水稻叶片图像时空动态特征的氮磷钾营养诊断[D]. 杭州: 浙江大学, 2018.
SUN Y Y. Diagnosis of nitrogen phosphorus and potassium deficiency based on temporal dynamics of rice leaf image[D]. Hangzhou: Zhejiang University, 2018.
[18]
吴辰文, 梁靖涵, 王伟, 等. 基于递归特征消除方法的随机森林算法[J]. 统计与决策, 2017(21):60-63.
WU C W, LIANG J H, WANG W, et al. Random forest algorithm based on recursive feature elimination[J]. Stat Decis, 2017(21):60-63.DOI:10.13546/j.cnki.tjyjc.2017.21.014.
[19]
刘笑笑. 基于RF-RFE算法的森林生物量遥感特征选择方法研究[D]. 泰安: 山东农业大学, 2016.
LIU X X. Study on the remote sensing feature selection method for forest biomass estimation based on RF-RFE[D]. Taian: Shandong Agricultural University, 2016.
[20]
魏小敏, 徐彬, 关佶红. 基于递归特征消除法的蛋白质能量热点预测[J]. 山东大学学报(工学版), 2014, 44(2):12-20.
WEI X M, XU B, GUAN J H. Prediction of protein energy hot spots based on recursion feature elimination[J]. J Shandong Univ (Eng Sci), 2014, 44(2):12-20.DOI: 10. 6040/j.issn.1672-3961.1.2013.378.
[21]
BREIMAN L. Random forests[J]. Machine Learning, 2001, 45(1):5-32.
[22]
杜学惠, 孟春, 刘美爽. 基于单个特征分类准确率的特征选择方法研究[J]. 南京林业大学学报(自然科学版), 2019, 43(4):109-116.
DU X H, MENG C, LIU M S. Research on feature selection based on single feature classification accuracy[J]. J Nanjing For Univ (Nat Sci Ed), 2019, 43(4):109-116.DOI: 10.3969/j.issn.1000-2006.201807059.
[23]
SUYKENS J A K, VANDEWALLE J. Least squares support vector machine classifiers[J]. Neural Process Lett, 1999, 9(3):293-300.DOI:10.1023/A:1018628609742.
[24]
田宝. 干旱胁迫对大叶黄杨保护酶及渗透物质含量的影响[J]. 山东林业科技, 2019, 49(4):64-67.
TIAN B. Effects of drought stress on protective enzymes and osmotic substances of Buxus megistophylla levl.[J]. J Shandong For Sci Technol, 2019, 49(4):64-67.DOI: 10.3969/j.issn.1002-2724.2019.04.017.
[25]
刘亮, 郝立华, 李菲, 等. CO2浓度和温度对玉米光合性能及水分利用效率的影响[J]. 农业工程学报, 2020, 36(5):122-129.
LIU L, HAO L H, LI F, et al. Effects of CO2 concentration and temperature on leaf photosynthesis and water use efficiency in maize[J]. Trans Chin Soc Agric Eng, 2020, 36(5): 122-129.DOI: 10.11975/j.issn.1002-6819.2020.05.014.
[26]
张森茂. 灌溉和施氮对楸树、云杉幼树生长和光合的影响[D]. 杨凌: 西北农林科技大学, 2019.
ZHANG S M. Effects of irrigation and nitrogen application on growth and photosynthesis of Catalpa bungei and Picea saplings[D]. Yangling: Northwest A & F University, 2019.
[27]
吴顺, 张雪芹, 蔡燕. 干旱胁迫对黄瓜幼苗叶绿素含量和光合特性的影响[J]. 中国农学通报, 2014, 30(1):133-137.
WU S, ZHANG X Q, CAI Y. Effects of drought stress on chlorophyll contents and photosynthetic characteristics of cucumber seedlings[J]. Chin Agric Sci Bull, 2014, 30(1):133-137.
[28]
张世柯, 黄耀, 简曙光, 等. 热带滨海植物红厚壳的抗逆生物学特性[J]. 热带亚热带植物学报, 2019, 27(4):391-398.
ZHANG S K, HUANG Y, JIAN S G, et al. Stress resistance characteristics of Calophyllum inophyllum,a tropical beach plant[J]. J Trop Subtrop Bot, 2019, 27(4):391-398.DOI:10.11926/jtsb.4043.
[29]
李婕, 刘楠, 任海, 等. 7种植物对热带珊瑚岛环境的生态适应性[J]. 生态环境学报, 2016, 25(5):790-794.
LI J, LIU N, REN H, et al. Ecological adaptability of seven plant species to tropical coral island habitat[J]. Ecol Environ Sci, 2016, 25(5):790-794.DOI: 10.16258/j.cnki.1674-5906.2016.05.009.
PDF(2675 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/