Effects of strip cutting on aboveground biomass accumulation and allocation, and allometric growth of Phyllostachys edulis

WANG Shumei, FAN Shaohui, XIAO Xiao, ZHENG Yaxiong, ZHOU Yang, GUAN Fengying

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2021, Vol. 45 ›› Issue (5) : 19-24.

PDF(1567 KB)
PDF(1567 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2021, Vol. 45 ›› Issue (5) : 19-24. DOI: 10.12302/j.issn.1000-2006.202012006

Effects of strip cutting on aboveground biomass accumulation and allocation, and allometric growth of Phyllostachys edulis

Author information +
History +

Abstract

【Objective】 Strip cutting of moso bamboo forests can realize their mechanized management. We aimed to provide a scientific basis for the reasonable management of bamboo strip cutting, biomass allocation and allometric growth of Phyllostachys edulis with different cutting widths. 【Method】 Whole forest clear-cutting of P. edulis forests of different widths was conducted in December 2019. The number of new bamboos, diameter at breast height (DBH), clear bole height and height of the bamboo at different cutting widths (0, 3, 9 and 15 m) were counted in August 2020. The biomass of branches, leaves and stems of new bamboo were investigated, and the biomass allocation characteristics and allometric growth relationship of aboveground components were analyzed. 【Result】 Strip cutting increased the number of new bamboos: the trend was first increase and then decrease, and the number reached the maximum value in the 9 m cutting width. With the increase in cutting width, the bamboo height (CBH), DBH, clear bole height, and ratio of CBH to DBH of new bamboo decreased, and the fresh branch, leaf, stem weight and total biomass decreased significantly. Strip cutting could improve the leaf strength and ratio of bamboo height to DBH of P. edulis, especially the proportion of leaf distribution and leaf relative biomass. Strip cutting did not change the isokinetic growth relationship between the stem-total biomass of P. edulis but significantly affected the relative growth rate of branch-total biomass and leaf-total biomass, which changed from allometric growth to isokinetic growth.【Conclusion】 The results showed that strip cutting balanced resource allocation among the components through physiological integration, the allometric growth relationship was changed, and the morphological plasticity of new bamboo was induced.

Key words

Phyllostachys edulis / strip cutting / biomass allocation / allometric growth

Cite this article

Download Citations
WANG Shumei , FAN Shaohui , XIAO Xiao , et al . Effects of strip cutting on aboveground biomass accumulation and allocation, and allometric growth of Phyllostachys edulis[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2021, 45(5): 19-24 https://doi.org/10.12302/j.issn.1000-2006.202012006

References

[1]
兰洁, 肖中琪, 李吉玫, 等. 天山雪岭云杉生物量分配格局及异速生长模型[J]. 浙江农林大学学报, 2020, 37(3):416-423.
LAN J, XIAO Z Q, LI J M, et al. Biomass allocation and allometric growth of Picea schrenkiana in Tianshan Mountains[J]. J Zhejiang A F Univ, 2020, 37(3):416-423.
[2]
费玲, 钟全林, 程栋梁, 等. 天然阔叶林与杉木人工林灌木层地上地下生物量的分配关系[J]. 林业科学, 2016, 52(3):97-104.
FEI L, ZHONG Q L, CHENG D L, et al. Biomass allocation between aboveground and underground of shrub layer vegetation in natural evergreen broad-leaved forest and Chinese fir plantation[J]. Sci Silvae Sin, 2016, 52(3):97-104. DOI: 10.11707/j.1001-7488.20160312.
[3]
郭子武, 章超, 杨丽婷, 等. 提前钩梢对雷竹地上构件生物量分配及其异速生长的影响[J]. 生态学报, 2020, 40(2):711-718.
GUO Z W, ZHANG C, YANG L T, et al. Effect of early obtruncation on aboveground biomass accumulation and allocation,and the allometric growth of Phyllostachys violascens[J]. Acta Ecol Sin, 2020, 40(2):711-718.
[4]
苏文会, 曾宪礼, 范少辉, 等. 带状采伐对毛竹非结构性碳与生物量分配的影响[J]. 生态学杂志, 2019, 38(10):2934-2940.
SU W H, ZENG X L, FAN S H, et al. Effects of strip clear-cutting on the allocation of non-structural carbohydrates and aboveground biomass of Phyllostachys edulis[J]. Chin J Ecol, 2019, 38(10):2934-2940. DOI: 10.13292/j.1000-4890.201910.016.
[5]
ALLEN A P, POCKMAN W T, RESTREPO C, et al. Allometry,growth and population regulation of the desert shrub larrea tridentata[J]. Functional Ecology, 2008, 22(2):197-204.
[6]
FARRIOR C E, BOHLMAN S A, HUBBELL S, et al. Dominance of the suppressed:power-law size structure in tropical forests[J]. Science, 2016, 351(6269):155-157.DOI: 10.1126/science.aad0592.
[7]
谢然, 陶冶, 常顺利. 四种一年生荒漠植物构件形态与生物量间的异速生长关系[J]. 生态学杂志, 2015, 34(3):648-655.
XIE R, TAO Y, CHANG S L. Allometric relationship between modular morphology and biomass of four annuals in the Gurbantunggut Desert,China[J]. Chin J Ecol, 2015, 34(3):648-655. DOI: 10.13292/j.1000-4890.2015.0089.
[8]
国家林业与草原局. 中国森林资源报告 [M]. 北京: 中国林业出版社, 2019.
[9]
范少辉, 刘广路, 苏文会, 等. 竹林培育研究进展[J]. 林业科学研究, 2018, 31(1):137-144.
FAN S H, LIU G L, SU W H, et al. Advances in research of bamboo forest cultivation[J]. For Res, 2018, 31(1):137-144. DOI: 10.13275/j.cnki.lykxyj.2018.01.017.
[10]
张洋洋, 凡莉莉, 徐文达, 等. 带状采伐后不同时期毛竹林恢复和土壤养分特征[J]. 西北植物学报, 2020, 40(8):1407-1413.
ZHANG Y Y, FAN L L, XU W D, et al. Restoration characteristics and soil nutrient content of Phyllostachys edulis forests after strip clear cutting[J]. Acta Bot Boreali-Occidentalia Sin, 2020, 40(8):1407-1413. DOI: 10.7606/j.issn.1000-4025.2020.08.1407.
[11]
曾宪礼, 苏文会, 范少辉, 等. 带状采伐毛竹林土壤质量评价[J]. 生态学杂志, 2019, 38(10):3015-3023.
ZENG X L, SU W H, FAN S H, et al. Assessment of soil quality in Moso bamboo forests under different strip clearcuttings[J]. Chin J Ecol, 2019, 38(10):3015-3023.DOI: 10.13292/j.1000-4890.201910.007.
[12]
WARTON D I, WEBER N C. Common slope tests for bivariate errors-in-variables models[J]. Biom J, 2002, 44(2):161-174.DOI: 10.1002/1521-4036(200203)44:2161:AID-BIMJ161>3.0.CO;2-N.
[13]
韩文轩, 方精云. 幂指数异速生长机制模型综述[J]. 植物生态学报, 2008, 32(4):951-960.
Abstract
个体大小对生物的各种生理属性有重要意义, 描述个体大小和生理属性关系的规律叫做异速生长。生物的异速生长通常以幂函数的形 式表示, 在众多的异速生长关系中, Kleiber定律所描述的新陈代谢率和个体大小的3/4幂指数关系最为重要和基本, 解释此有充分数据支持的 定律的机理也最具挑战性。围绕该著名的3/4幂指数异速生长关系, 该文回顾历史上主要的有关模型假说, 并重点介绍1990年代中期以来, 由 West等提出的分形分配网络模型和由其它研究人员建立的代表性模型: 最少载体网络模型、多因理论、最小总熵理论、构造理论、细胞优化生 长理论和能量消耗理论。
HAN W X, FANG J Y. Review on the mechanism models of allometric scaling laws:3/4 vs.2/3 power[J]. J Plant Ecol (Chin Version), 2008, 32(4):951-960.DOI: 10.3773/j.issn.1005-264x.2008.04.025.
[14]
李鑫, 李昆, 段安安, 等. 不同地理种源云南松幼苗生物量分配及其异速生长[J]. 北京林业大学学报, 2019, 41(4):41-50.
LI X, LI K, DUAN A A, et al. Biomass allocation and allometry of Pinus yunnanensis seedlings from different provenances[J]. J Beijing For Univ, 2019, 41(4):41-50.DOI: 10.13332/j.1000-1522.20180371.
[15]
ENQUIST B J, NIKLAS K J. Global allocation rules for patterns of biomass partitioning in seed plants[J]. Science, 2002, 295:1517-1520.DOI: 10.1126/science.1066360.
[16]
王树梅, 庞元湘, 宋爱云, 等. 基于林龄的滨海盐碱地杨树刺槐混交林土壤理化性质及草本植物多样性动态[J]. 生态学报, 2018, 38(18):6539-6548.
WANG S M, PANG Y X, SONG A Y, et al. Soil physiochemical properties and diversity of herbaceous plants dynamic on the different ages mixed forests of Populus × Euramercana ‘Neva’ and Robinia pseucdoacacia in coastal saline-alkali area[J]. Acta Ecol Sin, 2018, 38(18):6539-6548.
[17]
段梦成, 王国梁, 史君怡, 等. 间伐对油松人工林优势种群结构与分布格局的影响[J]. 生态学杂志, 2019, 38(1):1-10.
DUAN M C, WANG G L, SHI J Y, et al. Effects of thinning on structure and spatial pattern of dominant populations in Pinus tabulifomis plantations[J]. Chin J Ecol, 2019, 38(1):1-10.DOI: 10.13292/j.1000-4890.201901.035.
[18]
李明鲁, 吴兆飞, 邱华, 等. 采伐对吉林蛟河阔叶红松林生态功能的短期影响[J]. 北京林业大学学报, 2019, 41(9):40-49.
LI M L, WU Z F, QIU H, et al. Short-term effects of tending felling on ecological services of mixed broadleaved-Korean pine forests at Jiaohe in Jilin Province,northeastern China[J]. J Beijing For Univ, 2019, 41(9):40-49.DOI: 10.13332/j.1000-1522.20180442.
[19]
曾宪礼, 苏文会, 范少辉, 等. 带状采伐毛竹林恢复的质量特征研究[J]. 西北植物学报, 2019, 39(5):917-924.
ZENG X L, SU W H, FAN S H, et al. Qualitative recovery characteristics of moso bamboo forests under strip clearcutting[J]. Acta Bot Boreali-Occidentalia Sin, 2019, 39(5):917-924.DOI: 10.7606/j.issn.1000-4025.2019.05.0917.
[20]
程瑞梅, 沈雅飞, 封晓辉, 等. 森林自然更新研究进展[J]. 浙江农林大学学报, 2018, 35(5):955-967.
CHENG R M, SHEN Y F, FENG X H, et al. Research review on forests natural regeneration[J]. J Zhejiang A F Univ, 2018, 35(5):955-967.
[21]
ZHAO J C, SU W H, FAN S H, et al. Ammonia volatilization and nitrogen runoff losses from moso bamboo forests after different fertilization practices[J]. Canadian Journal of Forest Research, 2019, 49(3):213-220.
[22]
ZHAO J C, SU W H, FAN S H, et al. Effects of various fertilization depths on ammonia volatilization in Moso bamboo (Phyllostachys edulis) forests[J]. Plant, Soil and Environment, 2016, 62(3):128-134.
[23]
施建敏, 叶学华, 陈伏生, 等. 竹类植物对异质生境的适应:表型可塑性[J]. 生态学报, 2014, 34(20):5687-5695.
SHI J M, YE X H, CHEN F S, et al. Adaptation of bamboo to heterogeneous habitat:phenotypic plasticity[J]. Acta Ecol Sin, 2014, 34(20):5687-5695.DOI: 10.5846/stxb201308062036.
[24]
叶上游, 潘爽, 王景波, 等. 克隆植物生理整合作用研究进展[J]. 草原与草坪, 2008,(5):63-69.
YE S Y, PAN S, WANG J B, et al. Research progress on physiological integration of clonal plant[J]. Grassland Turf, 2008,(5):63-69.DOI: 10.13817/j.cnki.cyycp.2008.05.001.
[25]
董鸣. 异质性生境中的植物克隆生长:风险分摊[J]. 植物生态学报, 1996, 20(6):543-548.
DONG M. Plant clonal growth in heterogeneous habitats:risk-spreading[J]. Acta Phytoecol Sin, 1996, 20(6) 543-548.
[26]
WEINER J. Allocation,plasticity and allometry in plants[J]. Perspect Plant Ecol Evol Syst, 2004, 6(4):207-215.DOI: 10.1078/1433-8319-00083.
[27]
WRIGHT S D, MCCONNAUGHAY K D M. Interpreting phenotypic plasticity:the importance of ontogeny[J]. Plant Species Biol, 2002, 17(2/3):119-131.DOI: 10.1046/j.1442-1984.2002.00082.x.
[28]
YEN T M. Comparing aboveground structure and aboveground carbon storage of an age series of moso bamboo forests subjected to different management strategies[J]. J For Res, 2015, 20(1):1-8.DOI: 10.1007/s10310-014-0455-0.
[29]
SAITOH T, SEIWA K, NISHIWAKI A. Effects of resource heterogeneity on nitrogen translocation within clonal fragments of Sasa palmata:an isotopic (15N) assessment[J]. Ann Bot, 2006, 98(3):657-663.DOI: 10.1093/aob/mcl147.
[30]
李翀, 周国模, 施拥军, 等. 毛竹林老竹水平和经营措施对新竹发育质量的影响[J]. 生态学报, 2016, 36(8):2243-2254.
LI C, ZHOU G M, SHI Y J, et al. Effects of old bamboo forests and relevant management measures on growth of new bamboo forests[J]. Acta Ecol Sin, 2016, 36(8), 36:2243-2254.

RIGHTS & PERMISSIONS

Copyright reserved © 2021.
PDF(1567 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/