Effects of organic fertilizer addition on dissolved organic carbon in coastal saline soils

FAN Zhixin, WANG Genmei, ZHANG Huanchao, CHEN Jie

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (1) : 15-24.

PDF(2744 KB)
PDF(2744 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (1) : 15-24. DOI: 10.12302/j.issn.1000-2006.202012010

Effects of organic fertilizer addition on dissolved organic carbon in coastal saline soils

Author information +
History +

Abstract

【Objective】 To establish a theoretical basis to improve coastal saline soil and its carbon sink function, this study investigated the effects of organic fertilizer on the dissolved organic carbon (DOC) content and component sources in coastal saline soil, alongside the stability of the soil carbon pool. 【Method】 Two types of saline soil with differing salinities (i.e., high and low salt content) in the Jiangsu coastal area, China, were selected to explore changes in soil DOC content and its ultraviolet-visible (UV-Vis) spectrum and three-dimensional (3D) fluorescence spectrum by UV-Vis spectroscopy and 3D fluorescence spectroscopy. This was carried out alongside parallel factor analysis following the addition of organic cow manure fertilizer.【Result】 The results showed that the DOC content and degree of DOC humification for soils treated with organic cow manure fertilizer increased significantly(P<0.05), compared with the control treated with no organic cow manure fertilizer. The extent of DOC humification in the soil samples collected on days 15 and 60 following the addition of cow manure from the high-salt soil was obvious higher than its low-salt counterpart. The DOC in soil was mainly sourced from the addition of organic cow manure fertilizer; following this, the 3D fluorescence spectrum showed that the DOC fulvic acid peak was clearer. The parallel factor analysis identified four fluorescence components in the soil DOC: (1) C1 was the exogenous short-wave humic-like component (including UV region fulvic-like acid and marine fulvic-like acid); (2) C2 was the exogenous humic-like component (including UV region fulvic-like acid and visible region fulvic-like acid); (3) C3 was the endogenous protein-like component (including tryosine-like acid and tryptophan-like acid); (4) C4 was the endogenous protein-like component (only tryptophan-like acid). The proportion of each component in the soil DOC varied with time. 【Conclusion】 This study demonstrated that the addition of organic cow manure fertilizer to coastal saline soil increased the degree of DOC humification and the proportion of humic-like components in soil, while it significantly reduced the proportion of ammonia-like components (P<0.05). This indicates that the organic cow manure fertilizer is conducive to the stability of the active carbon pool in saline soil. However, as many factors affect soil DOC, the effects of organic cow manure fertilizer on soil DOC may different in other areas.

Key words

organic fertilizer / coastal saline soil / dissolved organic carbon / ultraviolet-visible (UV-Vis) spectrum / three-dimensional (3D) fluorescence spectrum / parallel factor analysis

Cite this article

Download Citations
FAN Zhixin , WANG Genmei , ZHANG Huanchao , et al. Effects of organic fertilizer addition on dissolved organic carbon in coastal saline soils[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2022, 46(1): 15-24 https://doi.org/10.12302/j.issn.1000-2006.202012010

References

[1]
BOLAN N, ADRIANO D C, KUNHIKRISHNAN A, et al. Dissolved organic matter[M]//Advances in Agronomy. Amsterdam: Elsevier, 2011: 1-75. DOI: 10.1016/b978-0-12-385531-2.00001-3.
[2]
WALLAGE Z E, HOLDEN J, MCDONALD A T. Drain blocking: an effective treatment for reducing dissolved organic carbon loss and water discolouration in a drained peatland[J]. Sci Total Environ, 2006, 367(2/3):811-821. DOI: 10.1016/j.scitotenv.2006.02.010.
[3]
李红伟, 张建国. 土壤可溶性有机碳研究进展及展望[C]// 2018中国环境科学学会科学技术年会论文集. 合肥:中国环境科学学会, 2018:767-773.
LI H W, ZHANG J G. Research Progress and Prospect of Soil Dissolved Organic Carbon[C]// Proceedings of the 2018 Annual Meeting of Science and Technology of the Chinese Society for Environmental Sciences (Volume 3). Hefei: Chinese Society for Environmental Sciences, 2018: 767-773.
[4]
HEIMANN M, REICHSTEIN M. Terrestrial ecosystem carbon dynamics and climate feedbacks[J]. Nature, 2008, 451(7176):289-292. DOI: 10.1038/nature06591.
[5]
MATTSSON T, KORTELAINEN P, DAVID M B. Dissolved organic carbon fractions in Finnish and Maine (USA) Lakes[J]. Environ Int, 1998, 24(5/6):521-525. DOI: 10.1016/S0160-4120(98)00042-7.
[6]
BARKER D J, MANNUCCHI G A, SALVI S M L, et al. Characterisation of soluble residual chemical oxygen demand (COD) in anaerobic wastewater treatment effluents[J]. Water Res, 1999, 33(11):2499-2510. DOI: 10.1016/S0043-1354(98)00489-8.
[7]
HUSSAIN M Z, ROBERTSON G P, BASSO B, et al. Leaching losses of dissolved organic carbon and nitrogen from agricultural soils in the upper US Midwest[J]. Sci Total Environ, 2020, 734:139379. DOI: 10.1016/j.scitotenv.2020.139379.
[8]
FUENTES M, GONZÁLEZ-GAITANO G, GARCÍA-MINA J M A. The usefulness of UV-visible and fluorescence spectroscopies to study the chemical nature of humic substances from soils and composts[J]. Org Geochem, 2006, 37(12):1949-1959. DOI: 10.1016/j.orggeochem.2006.07.024.
[9]
YU G H, WU M J, LUO Y H, et al. Fluorescence excitation-emission spectroscopy with regional integration analysis for assessment of compost maturity[J]. Waste Manag, 2011, 31(8):1729-1736. DOI: 10.1016/j.wasman.2010.10.031.
[10]
潘红卫, 雷宏平, 韩宇平, 等. PARAFAC解析北方典型蔬菜大棚DOM三维荧光光谱(英文)[J]. 光谱学与光谱分析, 2014, 34(6):1582-1588.
PAN H W, LEI H J, HAN Y P, et al. Analysis of spatial distribution characteristics of dissolved organic matter in typical greenhouse soil of northern China using three dimensional fluorescence spectra technique and parallel factor analysis model[J]. Spectrosc Spectr Anal, 34(6):1582-1588. DOI: 10.3964/j.issn.1000-0593(2014)06-1582-07.
[11]
王齐磊, 江韬, 赵铮, 等. 三峡库区典型农业小流域水体中溶解性有机质的光谱特征[J]. 环境科学, 2016, 37(6):2082-2092.
WANG Q L, JIANG T, ZHAO Z, et al. Spectral characteristics of dissolved organic matter (DOM) in waters of typical agricultural watershed of Three Gorges reservoir areas[J]. Environ Sci, 2016, 37(6):2082-2092. DOI: 10.13227/j.hjkx.2016.06.011.
[12]
谢理, 杨浩, 渠晓霞, 等. 滇池典型陆生和水生植物溶解性有机质组分的光谱分析[J]. 环境科学研究, 2013, 26(1):72-79.
XIE L, YANG H, QU X X, et al. Characterization of water extractable organic matters from the dominant plants in Lake Dianchi by multiple spectroscopic techniques[J]. Res Environ Sci, 2013, 26(1):72-79. DOI: 10.13198/j.res.2013.01.76.xiel.004.
[13]
梁俭, 江韬, 卢松, 等. 淹水条件下三峡库区典型消落带土壤释放DOM的光谱特征:紫外-可见吸收光谱[J]. 环境科学, 2016, 37(7):2496-2505.
LIANG J, JIANG T, LU S, et al. Spectral characteristics of dissolved organic matter (DOM) releases from soils of typical water-level fluctuation zones of Three Gorges reservoir areas: UV-vis spectrum[J]. Environ Sci, 2016, 37(7):2496-2505. DOI: 10.13227/j.hjkx.2016.07.011.
[14]
李帅东, 姜泉良, 黎烨, 等. 环滇池土壤溶解性有机质(DOM)的光谱特征及来源分析[J]. 光谱学与光谱分析, 2017, 37(5):1448-1454.
LI S D, JIANG Q L, LI Y, et al. Spectroscopic characteristics and sources of dissolved organic matter from soils around Dianchi Lake, Kunming[J]. Spectrosc Spectr Anal, 2017, 37(5):1448-1454. DOI: 10.3964/j.issn.1000-0593(2017)05-1448-07.
[15]
杨劲松. 中国盐渍土研究的发展历程与展望[J]. 土壤学报, 2008, 45(5):837-845.
YANG J S. Development and prospect of the research on salt-affected soils in China[J]. Acta Pedol Sin, 2008, 45(5):837-845. DOI: 10.3321/j.issn:0564-3929.2008.05.010.
[16]
LIU L P, LONG X H, SHAO H B, et al. Ameliorants improve saline-alkaline soils on a large scale in northern Jiangsu Province, China[J]. Ecol Eng, 2015, 81:328-334. DOI: 10.1016/j.ecoleng.2015.04.032
[17]
高婧, 杨劲松, 姚荣江, 等. 不同改良剂对滨海重度盐渍土质量和肥料利用效率的影响[J]. 土壤, 2019, 51(3):524-529.
GAO J, YANG J S, YAO R J, et al. Effects of different soil amendments on properties and fertilizer utilization efficiency for coastal heavily-salinized soil[J]. Soils, 2019, 51(3):524-529. DOI: 10.13758/j.cnki.tr.2019.03.015.
[18]
张迪, 韩晓增. 长期不同植被覆盖和施肥管理对黑土活性有机碳的影响[J]. 中国农业科学, 2010, 43(13):2715-2723.
ZHANG D, HAN X Z. Changes of black soil labile organic carbon pool under different vegetation and fertilization managements[J]. Sci Agric Sin, 2010, 43(13):2715-2723. DOI: 10.3864/j.issn.0578-1752.2010.13.011.
[19]
周国朋, 曹卫东, 白金顺, 等. 多年紫云英-双季稻下不同施肥水平对两类水稻土有机质及可溶性有机质的影响[J]. 中国农业科学, 2016, 49(21):4096-4106.
ZHOU G P, CAO W D, BAI J S, et al. Effects of different fertilization levels on soil organic matter and dissolved organic matter in two paddy soils after multi-years’ rotation of Chinese milk vetch and double-cropping rice[J]. Sci Agric Sin, 2016, 49(21):4096-4106. DOI: 10.3864/j.issn.0578-1752.2016.21.004.
[20]
高忠霞, 周建斌, 王祥, 等. 不同培肥处理对土壤溶解性有机碳含量及特性的影响[J]. 土壤学报, 2010, 47(1):115-121.
GAO Z X, ZHOU J B, WANG X, et al. Effects of different fertilizer treatments on content and characteristics of dissolved organic carbon in soil[J]. Acta Pedol Sin, 2010, 47(1):115-121. DOI: 10.11766/trxb200808290117.
[21]
ZHAO M X, ZHOU J, KALBITZ K. Carbon mineralization and properties of water-extractable organic carbon in soils of the south Loess Plateau in China[J]. Eur J Soil Biol, 2008, 44(2):158-165. DOI: 10.1016/j.ejsobi.2007.09.007.
[22]
赵越, 魏雨泉, 李洋, 等. 不同物料堆肥腐熟程度的紫外-可见光谱特性表征[J]. 光谱学与光谱分析, 2015, 35(4):961-965.
ZHAO Y, WEI Y Q, LI Y, et al. Using UV-vis absorbance for characterization of maturity in composting process with different materials[J]. Spectrosc Spectr Anal, 2015, 35(4):961-965. DOI: 10.3964/j.issn.1000-0593(2015)04-0961-05.
[23]
李太魁, 郭战玲, 寇长林, 等. 提取方法对土壤可溶性有机碳测定结果的影响[J]. 生态环境学报, 2017, 26(11):1878-1883.
LI T K, GUO Z L, KOU C L, et al. Effects of extraction conditions on the test results of soil dissolved organic carbon[J]. Ecol Environ Sci, 2017, 26(11):1878-1883. DOI: 10.16258/j.cnki.1674-5906.2017.11.008.
[24]
WANG L, WU F, ZHANG R, et al. Characterization of dissolved organic matter fractions from Lake Hongfeng, southwestern China Plateau[J]. J Environ Sci (China), 2009, 21(5):581-588. DOI: 10.1016/S1001-0742(08)62311-6.
[25]
李昀, 魏鸿杰, 王侃, 等. 溶解性有机物(DOM)与区域土地利用的关系: 基于三维荧光-平行因子分析(EEM-PARAFAC)[J]. 环境科学, 2019, 40(4):1751-1759.
LI J, WEI H J, WANG K, et al. Analysis of the relationship between dissolved organic matter (DOM) and watershed land-use based on three-dimensional fluorescence-parallel factor (EEM-PARAFAC) analysis[J]. Environ Sci, 2019, 40(4):1751-1759. DOI: 10.13227/j.hjkx.201808118.
[26]
CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environ Sci Technol, 2003, 37(24):5701-5710. DOI: 10.1021/es034354c.
[27]
BU X, WANG L, MA W B, et al. Spectroscopic characterization of hot-water extractable organic matter from soils under four different vegetation types along an elevation gradient in the Wuyi Mountains[J]. Geoderma, 2010, 159(1/2):139-146. DOI: 10.1016/j.geoderma.2010.07.005.
[28]
WICKLAND K P, NEFF J C, AIKEN G R. Dissolved organic carbon in Alaskan boreal forest: sources, chemical characteristics, and biodegradability[J]. Ecosystems, 2007, 10(8):1323-1340. DOI: 10.1007/s10021-007-9101-4.
[29]
MCKNIGHT D M, BOYER E W, WESTERHOFF P K, et al. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity[J]. Limnol Oceanogr, 2001, 46(1):38-48.DOI: 10.4319/lo.2001.46.1.0038.
[30]
YANG L, CHANG S, SHIN H, et al. Tracking the evolution of stream DOM source during storm events using end member mixing analysis based on DOM quality[J]. J Hydrolo, 2015, 523:333-341. DOI: 10.1016/j.jhydrol.2015.01.074.
[31]
HUGUET A, VACHER L, RELEXANS S, et al. Properties of fluorescent dissolved organic matter in the Gironde Estuary[J]. Org Geochem, 2009, 40(6):706-719. DOI: 10.1016/j.orggeochem.2009.03.002.
[32]
OHNO T, FERNANDEZ I J, HIRADATE S, et al. Effects of soil acidification and forest type on water soluble soil organic matter properties[J]. Geoderma, 2007, 140(1/2):176-187. DOI: 10.1016/j.geoderma.2007.04.004.
[33]
OHNO T, BRO R. Dissolved organic matter characterization using multiway spectral decomposition of fluorescence landscapes[J]. Soil Sci Soc Am J, 2006, 70(6):2028-2037. DOI: 10.2136/sssaj2006.0005.
[34]
WU H Y, ZHOU Z Y, ZHANG Y X, et al. Fluorescence-based rapid assessment of the biological stability of landfilled municipal solid waste[J]. Bioresour Technol, 2012, 110:174-183. DOI: 10.1016/j.biortech.2012.01.149.
[35]
YANG X L, YU X B, CHENG J R, et al. Impacts of land-use on surface waters at the watershed scale in southeastern China: insight from fluorescence excitation-emission matrix and PARAFAC[J]. Sci Total Environ, 2018, 627:647-657. DOI: 10.1016/j.scitotenv.2018.01.279.
[36]
MURPHY K R, RUIZ G M, DUNSMUIR W T M, et al. Optimized parameters for fluorescence-based verification of ballast water exchange by ships[J]. Environ Sci Technol, 2006, 40(7):2357-2362. DOI: 10.1021/es0519381.
[37]
CORY R M, MCKNIGHT D M. Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter[J]. Environ Sci Technol, 2005, 39(21):8142-8149. DOI: 10.1021/es0506962.
[38]
葛之葳, 张玲, 卜丹蓉, 等. 杨树人工林沼液和生物炭混施对表层土壤活性有机碳的影响[J]. 南京林业大学学报(自然科学版), 2016, 40(6):9-14.
GEN Z W, ZHANG L, BU D R, et al. Effects of biogas slurry and biochar application on active organic carbon in the topsoil of poplar plantation[J]. J Nanjing For Univ (Nat Sci Ed), 2016, 40(6):9-14. DOI: 10.3969/j.issn.1000-2006.2016.06.002.
[39]
韦梦雪, 王彬, 谌书, 等. 川西平原还田秸秆腐解释放DOM的光谱特征[J]. 光谱学与光谱分析, 2017, 37(9):2861-2868.
WEI M X, WANG B, CHEN S, et al. Study on spectral characteristics of dissolved organic matter collected from the decomposing process of crop straw in west Sichuan plain[J]. Spectrosc Spectr Anal, 2017, 37(9):2861-2868. DOI: 10.3964/j.issn.1000-0593(2017)09-2861-08.
[40]
王瑞. 秸秆添加对土壤温室气体排放和溶解性有机碳DOC组分的影响[D]. 武汉: 华中农业大学, 2018.
WANG R. The effect of straw incorporation on greenhouse gases emission and change of dissolved organic carbon DOC component[D]. Wuhan: Huazhong Agricultural University, 2018.
[41]
唐洪根, 周廷璋, 辛沛. 淤积刺激下滨海湿地植物根系吸水及土壤水分变化[J]. 水资源保护, 2020, 36(4):87-92.
TANG H G, ZHOU T Z, XIN P. Stimulation of sediment deposition to root water uptake and soil water change in wetland near sea[J]. Water Resources Protection, 2020, 36(4):87-92. DOI: 10.3880/j.issn.1004-6933.2020.04.014
[42]
LUDWIG W, PROBST J L, KEMPE S. Predicting the oceanic input of organic carbon by continental erosion[J]. Glob Biogeochem Cycles, 1996, 10(1):23-41. DOI: 10.1029/95GB02925.
[43]
谷思玉, 何鑫, 聂艳龙, 等. 有机肥施用对盐渍土富里酸荧光特性的影响[J]. 环境科学研究, 2016, 29(5):724-730.
GU S Y, HE X, NIE Y L, et al. Effects of organic fertilizer application on fluorescence characteristics of fulvic acid in saline soil[J]. Res Environ Sci, 2016, 29(5):724-730. DOI: 10.13198/j.issn.1001-6929.2016.05.14.
[44]
刘慧云, 鲜青松, 刘琛, 等. 生物质炭对紫色土耕地土壤中溶解性有机物含量和组成特征的影响[J]. 农业环境科学学报, 2017, 36(4):718-726.
LIU H Y, XIAN Q S, LIU C, et al. Effects of biochar application on content and characteristics of dissolved organic matter in arable land of purple soil[J]. J Agro-Environ Sci, 2017, 36(4):718-726. DOI: 10.11654/jaes.2016-1538.
[45]
李慧敏, 田胜营, 李丹丹, 等. 有机物料施用对潮土活性有机碳及微生物群落组成的影响[J]. 土壤学报, 2021, 58(3):777-787.
LI H M, TIAN S Y, LI D D, et al. Effect of Application of organic materials on content of labile organic carbon and composition of microbial community in fluvio-aquatic soil[J]. Acta Pedologica Sinica, 2021, 58(3):777-787. DOI: 10.11766/trxb201911070488.
[46]
陈营营, 郑昭佩, 杨芳, 等. 同步荧光结合主成分与二维相关研究盐碱性土溶解性有机质组成与结构特征[J]. 光谱学与光谱分析, 2020, 40(2):489-493.
CHEN Y Y, ZHENG Z P, YANG F, et al. The composition and structure of dissolved organic matter in saline soil were studied by synchronous fluorescence spectroscopy combined with principal components and two-dimensional correlation[J]. Spectrosc Spectr Anal, 2020, 40(2):489-493. DOI: 10.3964/j.issn.1000-0593(2020)02-0489-05.
[47]
曾阿莹, 胡伟芳, 张林海, 等. 盐度和淹水程度对短叶茳芏枯落物分解初期DOM含量及其组成结构的影响[J]. 生态学报, 2020, 40(8):2751-2762.
ZENG A Y, HU W F, ZHANG L H, et al. Effect of salinity and flood on the dissolved organic matter content and composition structure in the early stage of decomposition of Cyperus malaccensis litter[J]. Acta Ecol Sin, 2020, 40(8):2751-2762. DOI: 10.5846/stxb201902250351.
[48]
EDMONDS J W, WESTON N B, JOYE S B, et al. Microbial community response to seawater amendment in low-salinity tidal sediments[J]. Microb Ecol, 2009, 58(3):558-568. DOI: 10.1007/s00248-009-9556-2.
[49]
PIVNICKOVÁ B, REJMÁNKOVÁ E, SNYDER J M, et al. Heterotrophic microbial activities and nutritional status of microbial communities in tropical marsh sediments of different salinities: the effects of phosphorus addition and plant species[J]. Plant Soil, 2010, 336(1/2):49-63. DOI: 10.1007/s11104-010-0439-6.

RIGHTS & PERMISSIONS

Copyright reserved © 2022
PDF(2744 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/