Potential distributions of Picea crassifolia on the north slope of Qilian Mountains

TU Zhenyu, GOU Xiaohua, ZOU Songbing

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (2) : 221-226.

PDF(1814 KB)
PDF(1814 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (2) : 221-226. DOI: 10.12302/j.issn.1000-2006.202012011

Potential distributions of Picea crassifolia on the north slope of Qilian Mountains

Author information +
History +

Abstract

【Objective】Determining the distribution potential of Picea crassifolia in a suitable environment can provide an important basis for a regional ecological restoration and potential assessment. 【Method】Based on the species distribution data and related environmental data in the study area, a species distribution model based on the ecological niche was used to simulate the potential distribution of P. crassifolia with high spatial accuracy, and the key factors affecting its distribution characteristics were analyzed. 【Result】The results showed that the area under curve (AUC) values of the receiver operating characteristic (ROC) curves of the MaxEnt, Bioclim, Domain, and ecology niche factor analysis (ENFA) models were 0.977, 0.936, 0.959, and 0.904, respectively, which had high diagnostic values. Combined with the actual distribution of species and AUC values, the MaxEnt model had the best simulation effect. 【Conclusion】Using spatial analysis, the quantitative relationship between various environmental factors and P. crassifolia was summarized, and the boundary of environmental factors in the distribution area of P. crassifolia on the northern slope of the Qilian Mountains was defined using the standard deviation ellipse method, which provides a support for the regional ecological construction and has an important scientific and practical value.

Key words

Picea crassifolia / potential distribution / ecological niche / MaxEnt model / Qilian Mountains

Cite this article

Download Citations
TU Zhenyu , GOU Xiaohua , ZOU Songbing. Potential distributions of Picea crassifolia on the north slope of Qilian Mountains[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2022, 46(2): 221-226 https://doi.org/10.12302/j.issn.1000-2006.202012011

References

[1]
刘贤德, 张学龙. 祁连山天然林:河西走廊生命线[J]. 森林与人类, 2004(4):16-19.
LIU X D, ZHANG X L. The life line of the Hexi Hallway[J]. For Humankind, 2004(4):16-19.
[2]
赵传燕, 别强, 彭焕华. 祁连山北坡青海云杉林生境特征分析[J]. 地理学报, 2010, 65(1):113-121.
ZHAO C Y, BIE Q, PENG H H. Analysis of the niche space of Picea crassifolia on the northern slope of Qilian Mountains[J]. Acta Geogr Sin, 2010, 65(1):113-121.
[3]
赵成章, 龙瑞军. 祁连山地牧民经济收入变迁及影响因素实证研究[J]. 干旱区资源与环境, 2005, 19(S1):38-42.
ZHAO C Z, LONG R J. Study on the economic income change and influence factors of households in Qilian Mountain[J]. J Arid Land Resour Environ, 2005, 19(S1):38-42.
[4]
戴尔阜, 方创琳. 甘肃河西地区生态问题与生态环境建设[J]. 干旱区资源与环境, 2002, 16(2):1-5.
DAI E F, FANG C L. Ecological problems and ecological environment construction in Hexi area of Gansu[J]. J Arid Land Resour Environ, 2002, 16(2):1-5. DOI: 10.3969/j.issn.1003-7578.2002.02.001.
[5]
姜红梅, 李明治, 王亲, 等. 祁连山东段不同植被下土壤养分状况研究[J]. 水土保持研究, 2011, 18(5):166-170.
JIANG H M, LI M Z, WANG Q, et al. Dynamics of soil nutrients under different vegetation types in the eastern Qilian Mountains[J]. Res Soil Water Conserv, 2011, 18(5):166-170.
[6]
曹雪萍, 王婧如, 鲁松松, 等. 气候变化情景下基于最大熵模型的青海云杉潜在分布格局模拟[J]. 生态学报, 2019, 39(14):5232-5240.
CAO X P, WANG J R, LU S S, et al. Simulation of the potential distribution patterns of Picea crassifolia in climate change scenarios based on the maximum entropy (MaxEnt) model[J]. Acta Ecol Sin, 2019, 39(14):5232-5240.
[7]
张明军, 周立华. 祁连山水源涵养林生态系统服务价值估算[J]. 甘肃林业科技, 2003, 28(1):7-9.
ZHANG M J, ZHOU L H. The forest ecosystem service and their valuation on Qilian Mountain[J]. J Gansu For Sci Technol, 2003, 28(1):7-9.
[8]
孟好军, 刘建泉, 刘贤德, 等. 祁连山青海云杉群落物种组成及α多样性垂直分布[J]. 生态环境学报, 2011, 20(3):435-440.
MENG H J, LIU J Q, LIU X D, et al. Species composition and vertical distribution pattern of α diversity of the Picea crassifolia community in Qilian Mountains of Gansu,China[J]. Ecol Environ Sci, 2011, 20(3):435-440. DOI: 10.16258/j.cnki.1674-5906.2011.03.003.
[9]
李飞, 赵军, 赵传燕, 等. 中国干旱半干旱区潜在植被演替[J]. 生态学报, 2011, 31(3):689-697.
LI F, ZHAO J, ZHAO C Y, et al. Succession of potential vegetation in arid and semi-arid area of China[J]. Acta Ecol Sin, 2011, 31(3):689-697.
[10]
车彦军, 赵军, 张明军, 等. 不同气候变化情景下2070-2099年中国潜在植被及其敏感性[J]. 生态学报, 2016, 36(10):2885-2895.
CHE Y J, ZHAO J, ZHANG M J, et al. Potential vegetation and its sensitivity under different climate change scenarios from 2070 to 2099 in China[J]. Acta Ecol Sin,2016, 36(10):2885-2895.
[11]
王运生, 谢丙炎, 万方浩, et al. ROC曲线分析在评价入侵物种分布模型中的应用[J]. 生物多样性, 2007, 15(4):365-372.
WANG Y S, XIE B Y, WAN F H, et al. Application of ROC curve analysis in evaluating the performance of alien species’ potential distribution[J]. Biodivers Sci, 2007, 15(4):365-372.
[12]
邢丁亮, 郝占庆. 最大熵原理及其在生态学研究中的应用[J]. 生物多样性, 2011, 19(3):295-302.
Abstract
最大熵原理(the principle of maximum entropy)起源于信息论和统计力学, 是基于有限的已知信息对未知分布进行无偏推断的一种数学方法。这一方法在很多领域都有成功应用, 但只是近几年才被应用到生态学研究中, 并且还存在很多争论。我们从基本概念和方法出发, 用掷骰子的例子阐明了最大熵原理的概念, 并提出运用最大熵原理解决问题需要遵从的步骤。最大熵原理在生态学中的应用主要包括以下方面: (1)用群落水平功能性状的平均值作为约束条件来预测群落物种相对多度的模型; (2)基于气候、海拔、植被等环境因子构建物种地理分布的生态位模型; (3)对物种多度分布、种–面积关系等宏生态学格局的推断; (4)对物种相互作用的推断; (5)对食物网度分布的研究等等。最后我们综合分析了最大熵原理在生态学应用中所存在的争议, 包括相应模型的有效性、可靠性等方面, 介绍了一些对最大熵原理预测能力及其局限性的检验结果, 强调了生态学家应用最大熵原理需要注意的问题, 比如先验分布的选择、约束条件的设置等等。在物种相互作用、宏生态学格局等方面对最大熵原理更广泛的讨论与应用可能会给生态学带来新的发展机会。
XING D L, HAO Z Q. The principle of maximum entropy and its applications in ecology[J]. Biodivers Sci, 2011, 19(3):295-302.
[13]
刘清亮, 李垚, 方升佐. 基于MaxEnt模型的青钱柳潜在适宜栽培区预测[J]. 南京林业大学学报(自然科学版), 2017, 41(4):25-29.
LIU Q L, LI Y, FANG S Z. MaxEnt model-based identification of potential Cyclocarya paliurus cultivation regions[J]. J Nanjing For Univ (Nat Sci Ed), 2017, 41(4):25-29. DOI: 10.3969/j.issn.1000-2006.201608010.
[14]
杨瑞, 张雅林, 冯纪年. 利用ENFA生态位模型分析玉带凤蝶和箭环蝶异地放飞的适生性[J]. 昆虫学报, 2008, 51(3):290-297.
YANG R, ZHANG Y L, FENG J N. Habitat suitability analysis in live releasing of two butterflies Papilio polytes Linnaeus and Stichophthalma howqua (Westwood) in China using ENFA[J]. Acta Entomol Sin, 2008, 51(3):290-297. DOI: 10.16380/j.kcxb.2008.03.007.
[15]
HOLDRIDGE L R. Determination of world plant formations from simple climatic data[J]. Science, 1947, 105(2727):367-368. DOI: 10.1126/science.105.2727.367.
[16]
罗翀, 徐卫华, 周志翔, 等. 基于生态位模型的秦岭山系林麝生境预测[J]. 生态学报, 2011, 31(5):1221-1229.
LUO C, XU W H, ZHOU Z X, et al. Habitat prediction for forest musk deer(Moschus berezovskii) in Qinling Mountain range based on niche model[J]. Acta Ecol Sin, 2011, 31(5):1221-1229.
[17]
张兴旺, 李垚, 方炎明. 麻栎在中国的地理分布及潜在分布区预测[J]. 西北植物学报, 2014, 34(8):1685-1692.
ZHANG X W, LI Y, FANG Y M. Geographical distribution and prediction of potential ranges of Quercus acutissima in China[J]. Acta Bot Boreali Occidentalia Sin, 2014, 34(8):1685-1692.
[18]
张海涛, 罗渡, 牟希东, 等. 应用多个生态位模型预测福寿螺在中国的潜在适生区[J]. 应用生态学报, 2016, 27(4):1277-1284.
ZHANG H T, LUO D, MU X D, et al. Predicting the potential suitable distribution area of the apple snail Pomacea canaliculata in China based on multiple ecological niche models[J]. Chin J Appl Ecol, 2016, 27(4):1277-1284. DOI: 10.13287/j.1001-9332.201604.027.
[19]
张雷, 刘世荣, 孙鹏森, 等. 基于DOMAIN和Neural Ensembles模型预测中国毛竹潜在分布[J]. 林业科学, 2011, 47(7):20-26.
ZHANG L, LIU S R, SUN P S, et al. Predicting the potential distribution of Phyllostachys edulis with DOMAIN and Neural Ensembles models[J]. Sci Silvae Sin, 2011, 47(7):20-26.
[20]
郭乃嘉. 基于生态位模型的中间香型烤烟生态适宜区潜在分布预测[D]. 重庆: 西南大学, 2013.
GUO N J. Potential distribution prediction of middle flavor style flue-cured tobacco based on ecological niche model[D]. Chongqing: Southwest University, 2013.
[21]
蒋霞, 倪健. 西北干旱区10种荒漠植物地理分布与大气候的关系及其可能潜在分布区的估测[J]. 植物生态学报, 2005, 29(1):98-107.
Abstract
选择面积广阔、地理位置特殊、气候干旱、地形地貌多样、生态系统脆弱以及人类活动长期干扰,而且目前面临着西部大开发和环境保护双重矛盾的西北干旱区作为研究区域,通过收集西北干旱区多种优势种和常见种的地理分布资料,选取10 种分布范围相对明确、资料相对齐备的荒漠植物种:短叶假木贼(Anabasis brevifolia)、木蓼(Atraphaxis frutescens)、沙拐枣(Calligonum mongolicum)、膜果麻黄(Ephedra przewalskii)、裸果木(Gymnocarpos przewalskii)、梭梭柴(Haloxylon ammodendron)、白梭梭(Haloxylon persicum)、尖叶盐爪爪(Kalidium cuspidatum)、松叶猪毛菜(Salsola laricifolia)和合头草(Sympegma regelii),定量分析其地理分布与气候因子的关系,并据此估测其潜在中心分布区和潜在最大分布范围,与实际分布范围进行比较。结果表明,10种荒漠植物的Holdridge生物温度、降水量和可能蒸散率的平均值、标准差、最大值和最小值比较准确地反映了我国荒漠地区的典型气候特征,说明植物种分布与气候的定量对应关系较好。其可能潜在分布的估测中,中心分布估测图与植物种的实际分布范围有较好的对应性,而在最大可能分布的估测图中,与实际有一定误差及存在一些不合理的地方,但种与种之间有差异。究其原因,首先在于目前所拥有的植物种分布和气象资料的限制,而且植物种的实际分布范围受到人为活动的影响较大,所以无法完全把握植物种与气候的准确定量关系;其次,气候极值所预测的只是植物种分布的最大可能性,而不能表现出植物种现实分布的主要地区,气候均值与标准差所反映的中心分布区,其准确性更可靠;再者,模拟预测仅考虑了植物种与大气候的关系,而没有考虑决定植物分布的其它环境因素,如土壤、基质、地形等地理因素。
JIANG X, NI J. Species-climate relationships of 10 desert plant species and their estimated potential distribution range in the arid lands of northwestern China[J]. Acta Phytoecol Sin, 2005, 29(1):98-107.
[22]
张颖, 李君, 林蔚, 等. 基于最大熵生态位元模型的入侵杂草春飞蓬在中国潜在分布区的预测[J]. 应用生态学报, 2011, 22(11):2970-2976.
ZHANG Y, LI J, LIN W, et al. Prediction of potential distribution area of Erigeron philadelphicus in China[J]. Chin J Appl Ecol, 2011, 22(11):2970-2976. DOI: 10.13287/j.1001-9332.2011.0415.
[23]
SVENNING J C, SKOV F. The relative roles of environment and history as controls of tree species composition and richness in Europe[J]. J Biogeogr, 2005, 32(6):1019-1033. DOI: 10.1111/j.1365-2699.2005.01219.x.
[24]
张虎, 温娅丽, 马力, 等. 祁连山北坡中部气候特征及垂直气候带的划分[J]. 山地学报, 2001, 19(6):497-502.
ZHANG H, WEN Y L, MA L, et al. The climate features and regionalization of vertical climatic zones in the northern slope of Qilian Mountains[J]. J Mt Res, 2001, 19(6):497-502.
[25]
陈桂琛, 彭敏, 黄荣福, 等. 祁连山地区植被特征及其分布规律[J]. 植物学报, 1994, 36(1):63-72.
CHEN G C, PENG M, HUANG R F, et al. Vegetation characteristics and its distribution of Qilian Mountain region[J]. Acta Bot Sin, 1994, 36(1):63-72.
[26]
王学福, 郭生祥. 祁连山青海云杉个体生长过程分析[J]. 林业实用技术, 2014(7):10-13.
WANG X F, GUO S X. Analysis of individual growth process of Qinghai spruce in Qilian Mountains[J]. Pract For Technol, 2014(7):10-13. DOI: 10.13456/j.cnki.lykt.2014.07.003.
[27]
王延芳, 张永香, 勾晓华, 等. 祁连山中部低海拔地区青海云杉径向生长的气候响应机制[J]. 生态学报, 2020, 40(1):161-169.
WANG Y F, ZHANG Y X, GOU X H, et al. Climate response mechanism of radial growth of Picea crassifolia in low altitude area of middle Qilian Mountains[J]. Acta Ecol Sin, 2020, 40(1):161-169. DOI: 10.5846/stxb201811022366.
[28]
郭铌, 杨兰芳, 李民轩. 利用气象卫星资料研究祁连山区植被和积雪变化[J]. 应用气象学报, 2003, 14(6):700-707.
GUO N, YANG L F, LI M X. Study of changes of vegetation and snow area in Qilian Mountains using meteorology satellite data[J]. J Appl Meteorol Sci, 2003, 14(6):700-707. DOI: 10.3969/j.issn.1001-7313.2003.06.008.
[29]
刘建泉. 祁连山保护区青海云杉种群分布格局的研究[J]. 西北林学院学报, 2004, 19(2):152-155.
LIU J Q. Spatial pattern of Picea crassifolia population in Qilianshan Nature Conservation[J]. J Northwest For Univ, 2004, 19(2):152-155. DOI: 10.3969/j.issn.1001-7461.2004.02.044.
[30]
别强, 赵传燕, 强文丽, 等. 祁连山自然保护区青海云杉林近四十年动态变化分析[J]. 干旱区资源与环境, 2013, 27(4):176-180.
BIE Q, ZHAO C Y, QIANG W L, et al. Dynamic change of Picea crassifolia in Qilian Mountain in recent 40 years[J]. J Arid Land Resour Environ, 2013, 27(4):176-180. DOI: 10.13448/j.cnki.jalre.2013.04.020.
PDF(1814 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/