Advances in the studies and applications of Styrax species

WU Qikui, ZHANG Zihan, XU Zongda, SUN Limin, YU Fangyuan

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (5) : 240-246.

PDF(1479 KB)
PDF(1479 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (5) : 240-246. DOI: 10.12302/j.issn.1000-2006.202012014

Advances in the studies and applications of Styrax species

Author information +
History +

Abstract

Styrax species, with many species and wide distribution, have high ornamental, edible, medicinal, oil, timber and ecological value, understanding their utilization potentiality of flower, fruit, leaf and resin can provide theoretical basis for improving above values. In this paper, study advance of Styrax species is reviewed from biogeography and genetic biodiversity, biological and ecological characteristics, phytochemistry, resource utilization and propagation. South China and Cerrado of Brazil are the areas where Styrax plants are concentrated. Styrax species are white-flowered and light-fragrance trees with high landscaping value. Styrax species have great potential as woody biodiesel species having seed kernels with high oil content (54%), excellent fatty acid composition with oleic acid and linoleic acid accounted for 85%. Relevant researches are beneficial to enrich the resources of China's woody oil industry and optimize its planting structure. Studies on germplasm breeding and stress response showed that Styrax has good environmental adaptability and heavy metal tolerance. Benzoin, with complex chemical composition, is a traditional Chinese medicine substance with anti-cancer, refreshing effects and other benefits. The chemical component of different organs in Styrax plant are complex, which is important to study the metabolic mechanism. Used as a timber tree, Styrax trees have great potential in pulping, papermaking, carving and other fields. Styrax species have high value in the research direction and application fields.

Key words

Styrax / benzoin / ornamental value / biodiesel plant / research process

Cite this article

Download Citations
WU Qikui , ZHANG Zihan , XU Zongda , et al . Advances in the studies and applications of Styrax species[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2022, 46(5): 240-246 https://doi.org/10.12302/j.issn.1000-2006.202012014

References

[1]
中国科学院中国植物志编辑委员会. 中国植物志:第33卷[M]. 北京: 科学出版社, 1987:84-86.
Editorial Committee of flora of China. Flora of China: the 33 volumes[M]. Beijing: Science Press, 1987:84-86.
[2]
张璐, 王建, 王丽梅, 等. 安息香的研究进展[J]. 中药与临床, 2014, 5(3):61-64.
ZHANG L, WANG J, WANG L M, et al. The progress of Anxixiang research[J]. Pharm Clin Chin Mater Med, 2014, 5(3):61-41.
[3]
ZHANG L, WANG F F, ZHANG Q, et al. Anti-inflammatory and anti-apoptotic effects of stybenpropol A on human umbilical vein endothelial cells[J]. Int J Mol Sci, 2019, 20(21):5383.DOI:10.3390/ijms20215383.
[4]
BURGER P, CASALE A, KERDUDO A, et al. New insights in the chemical composition of benzoin balsams[J]. Food Chem, 2016, 210:613-622.DOI:10.1016/j.foodchem.2016.05.015.
[5]
XU L P, YU F Y. Corolla structure and fragrance components in Styrax tonkinensis[J]. Trees, 2015, 29(4):1127-1134.DOI:10.1007/s00468-015-1193-4.
[6]
吴岐奎, 费馨冉, 高燕, 等. 野茉莉属8个油料树种燃料特性的比较分析[J]. 中国油脂, 2019, 44(1):27-30.
WU Q K, FEI X R, GAO Y, et al. Comparative analysis of fuel properties of eight biodiesel plants species of Styrax spp[J]. China Oils Fats, 2019, 44(1):27-30.DOI:10.3969/j.issn.1003-7969.2019.01.007.
[7]
王哲宇, 童丽丽, 汤庚国. 野茉莉科植物地理分布研究进展[J]. 金陵科技学院学报, 2013, 29(1):65-71.
WANG Z Y, TONG L L, TANG G G. Geographic distribution of Styracaceae[J]. J Jinling Inst Technol, 2013, 29(1):65-71.DOI:10.16515/j.cnki.32-1722/n.2013.01.006.
[8]
童丽丽, 刘政, 许晓岗, 等. 中国安息香属植物的形态特征及自然地理分布[J]. 金陵科技学院学报, 2019, 35(2):75-80.
TONG L L, LIU Z, XU X G, et al. Morphological characteristics and natural geographical distribution of Styrax species in China[J]. J Jinling Inst Technol, 2019, 35(2):75-80.DOI:10.16515/j.cnki.32-1722/n.2019.02.017.
[9]
KISSMANN C, HABERMANN G. Seed germination performances of Styrax species help understand their distribution in Cerrado areas in Brazil[J]. Bragantia, 2013, 72(3):199-207.DOI:10.1590/brag.2013.030.
[10]
CESUR C, USKUTOGLU T, ŞENKAL B Ç, et al. Influence of harvest time on protein content and lipids profile of wild Styrax officinalis seeds from different locations in Turkey[J]. Rend Fis Acc Lincei, 2019, 30(4):689-698.DOI:10.1007/s12210-019-00842-4.
[11]
XU X G, ZHANG Y Q, TONG L L, et al. The complete chloroplast genome of Styrax dasyanthus Perkins (Styracaceae)[J]. Mitochondrial DNA B, 2020, 5(1):961-962.DOI:10.1080/23802359.2020.1721375.
[12]
TONG T T, SHAO L L. Characterization of the complete chloroplast genome of Styrax macrocarpus (Styracaceae),an endemic species from China[J]. Mitochondrial DNA B, 2020, 5(3):2811-2812.DOI:10.1080/23802359.2020.1789005.
[13]
XU X G, ZHANG Y Q, TONG L L, et al. The complete chloroplast genome sequence of Styrax duclouxii Perkins (Styracaceae)[J]. Mitochondrial DNA B Resour, 2020, 5(1):1029-1030.DOI:10.1080/23802359.2020.1722039.
[14]
TIAN Y K, ZHANG Y Q, TONG L L, et al. The complete chloroplast genome sequence of Styrax chinensis Hu et S.Y.Liang (Styracaceae)[J]. Mitochondrial DNA B, 2020, 5(3):3363-3365.DOI:10.1080/23802359.2020.1821822.
[15]
LI W, ZHANG C P, JIANG X Q, et al. De novo transcriptomic analysis and development of EST-SSRs for Styrax japonicus[J]. Forests, 2018, 9(12):748.DOI:10.3390/f9120748.
[16]
WANG F, WANG Z F, YE W H, et al. Isolation and characterization of microsatellite loci in an endemic species Styrax odoratissimus (Styracaceae) in subtropical forests[J]. Conservation Genet Resour, 2014, 6(3):579-580.DOI:10.1007/s12686-014-0144-5.
[17]
许晓岗, 吴秀萍, 丁芳芳. 垂珠花自然居群表型性状及遗传多样性分析[J]. 西北植物学报, 2017, 37(8):1517-1524.
XU X G, WU X P, DING F F. Phenotypic traits and genetic diversity of natural population of Styrax dasyanthus Perkins[J]. Acta Bot Boreali Occidentalia Sin, 2017, 37(8):1517-1524.DOI:10.7606/j.issn.1000-4025.2017.08.1517.
[18]
WANG X, XING S Y, SUN L M, et al. Genetic diversity of Styrax obassia Sieb.et Zucc.based on AFLP markers[J]. Biochem Syst Ecol, 2015, 61:28-34.DOI:10.1016/j.bse.2015.04.024.
[19]
陈晨, 喻方圆. 林木花芽分化研究进展[J]. 林业科学, 2020, 56(9):119-129.
CHEN C, YU F Y. Research progress on flower bud differentiation of trees[J]. Sci Silvae Sin, 2020, 56(9):119-129.DOI:10.11707/j.1001-7488.20200914.
[20]
LI W, XU Z Z, ZHANG C P, et al. Transcriptomic identification of floral transition and development-associated genes in Styrax japonicus[J]. Forests, 2019, 11(1):10.DOI:10.3390/f11010010.
[21]
CHEN C, CAO Y, WANG X, et al. Do stored reserves and endogenous hormones in overwintering twigs determine flower bud differentiation of summer blooming plant-Styrax tonkinensis?[J]. Int J Agric Biol, 2019, 22(4):815-820.
[22]
徐丽萍, 喻方圆. 东京野茉莉花色成分的初步研究[J]. 江西农业大学学报, 2016, 38(5):935-939.
XU L P, YU F Y. A preliminary study on color component of Styrax tonkinensis flower[J]. Acta Agric Univ Jiangxiensis, 2016, 38(5):935-939.DOI:10.13836/j.jjau.2016132.
[23]
曹媛媛, 贾斐斐, 吴岐奎, 等. 野茉莉属6个树种不同时期花香成分分析[J]. 南京林业大学学报(自然科学版), 2019, 43(4):48-56.
CAO Y Y, JIA F F, WU Q K, et al. Analysis of volatile components in different flowering stages in six species of Styrax spp[J]. J Nanjing For Univ (Nat Sci Ed), 2019, 43(4):48-56.DOI:10.3969/j.issn.1000-2006.201809002.
[24]
李莉, 马冬雪, 刘仁林. 东京野茉莉(Styrax tonkinensis)花的芳香油成分特征分析[J]. 赣南师范大学学报, 2020, 41(3):68-72.
LI L, MA D X, LIU R L. Componential features of the aromatic oil from Styrax tonkinensis flowers[J]. J Gannan Norm Univ, 2020, 41(3):68-72.DOI:10.13698/j.cnki.cn36-1346/c.2020.03.016.
[25]
XU L P, YU F Y. Corolla structure and fragrance components in Styrax tonkinensis[J]. Trees, 2015, 29(4):1127-1134.DOI:10.1007/s00468-015-1193-4.
[26]
WU Q K, ZHANG Z H, PENG H, et al. The nutrient distribution in the continuum of the pericarp,seed coat,and kernel during Styrax tonkinensis fruit development[J]. Peer J, 2019, 7:e7996.DOI:10.7717/peerj.7996.
[27]
WU Q K, CAO Y Y, ZHAO X, et al. A comparative study of seed reserve accumulation in five Styrax species with potential for biofuel production[J]. Trees, 2020, 34(4):891-902.DOI:10.1007/s00468-020-01968-x.
[28]
WU Q K, ZHAO X, CHEN C, et al. Metabolite profiling and classification of developing Styrax tonkinensis kernels[J]. Metabolites, 2020, 10(1):21.DOI:10.3390/metabo10010021.
[29]
KISSMANN C, TOZZI H H, MARTINS S, et al. Germination performance of congeneric Styrax species from the Cerrado sensu lato areas and their distribution pattern in different physiognomies[J]. Flora Morphol Distribution Funct Ecol Plants, 2012, 207(9):673-681.DOI:10.1016/j.flora.2012.06.019.
[30]
LIMA Y B C, DURIGAN G, SOUZA F M. Germination of 15 cerrado plant species under different light conditions[J]. Biosci J, 2014, 30(6):1864-1872.
[31]
SIMÃO E, NAKAMURA A T, T AKAKI M.Germination of Styrax camporum Pohl.seeds in response to substrate types,moisture contents and the seed morphology[J]. An Acad Bras Cienc, 2013, 85(1):295-306.DOI:10.1590/s0001-37652013005000015.
[32]
许晓岗, 郭晓旭, 吴秀萍, 等. 垂珠花种子特性与休眠机制破除方法[J]. 江苏农业科学, 2019, 47(16):163-166.
XU X G, GUO X X, WU X P, et al. Seed characteristics of Styrax dasyanthus flower and method for breaking dormancy mechanism[J]. Jiangsu Agric Sci, 2019, 47(16):163-166.DOI:10.15889/j.issn.1002-1302.2019.16.036.
[33]
赵婕, 张子晗, 侯秋彦, 等. 东京野茉莉种子休眠特性的研究[J]. 中南林业科技大学学报, 2019, 39(1):45-51.
ZHAO J, ZHANG Z H, HOU Q Y, et al. Investigation on dormancy characteristics of Styrax tonkinensis seeds[J]. J Central South Univ For Technol, 2019, 39(1):45-51.DOI:10.14067/j.cnki.1673-923x.2019.01.008.
[34]
SHI X, ZHANG X L, CHEN G C, et al. Seedling growth and metal accumulation of selected woody species in copper and lead/zinc mine tailings[J]. J Environ Sci, 2011, 23(2):266-274.DOI:10.1016/S1001-0742(10)60402-0.
[35]
SILVA C M S, HARAKAVA R, SONSIN-OLIVEIRA J, et al. Physiological and structural traits of the congeneric species Styrax ferrugineus and S.pohlii occurring in contrasting environments[J]. Flora, 2017, 235:51-58.DOI:10.1016/j.flora.2017.01.014.
[36]
FEISTLER A M, HABERMANN G. Assessing the role of vertical leaves within the photosynthetic function of Styrax camporum under drought conditions[J]. Photosynthetica, 2012, 50(4):613-622.DOI:10.1007/s11099-012-0069-8.
[37]
KISSMANN C, VEIGA E B D, EICHEMBERG M T, et al. Morphological effects of flooding on Styrax pohlii and the dynamics of physiological responses during flooding and post-flooding conditions[J]. Aquat Bot, 2014, 119:7-14.DOI:10.1016/j.aquabot.2014.06.007.
[38]
BADSHAH T, MUNEER M, REHMAN A U, et al. Evaluation of the forest structure,diversity and biomass carbon potential in the southwest region of Guangxi,China[J]. Appl Ecol Environ Res, 2020, 18(1):447-467.DOI:10.15666/aeer/1801_447467.
[39]
董如磊, 喻方圆, 欧阳献. 遮荫对东京野茉莉幼苗叶片形态和解剖结构的影响[J]. 江西农业大学学报, 2010, 32(5):974-981.
DONG R L, YU F Y, OUYANG X. Effects of shading treatments on leaf morphology and anatomical structure of Styrax tonkinensis seedlings[J]. Acta Agric Univ Jiangxiensis, 2010, 32(5):974-981.DOI:10.13836/j.jjau.2010174.
[40]
ZHANG Z H, LUO Y, WANG X J, et al. Fruit spray of 24-epibrassinolide and fruit shade alter pericarp photosynthesis activity and seed lipid accumulation in Styrax tonkinensis[J]. J Plant Growth Regul, 2018, 37(4):1066-1084.DOI:10.1007/s00344-017-9769-4.
[41]
WU Q K, CHEN H, ZHANG Z H, et al. Effects of fruit shading on gene and protein expression during starch and oil accumulation in developing Styrax tonkinensis Kernels[J]. Front Plant Sci, 2022, 13:905633.DOI: 10.3389/fpls.2022.905633.
[42]
高振洲, 李洁宁, 喻方圆. 安息香属3个树种苗木抗寒生理差异研究[J]. 中南林业科技大学学报, 2018, 38(2):36-42.
GAO Z Z, LI J N, YU F Y. Differences of physiological parameters of cold hardiness in Styrax suberifolius,Styrax tonkinensis and Styrax dasyanthus seedlings[J]. J Central South Univ For Technol, 2018, 38(2):36-42.DOI:10.14067/j.cnki.1673-923x.2018.02.006.
[43]
罗颖, 张子晗, 张丽玲, 等. 不同越冬措施下东京野茉莉苗木的生理特性[J]. 林业科技开发, 2015, 29(6):76-79.
LUO Y, ZHANG Z H, ZHANG L L, et al. Physiological characteristics of Styrax tonkinensis seedlings under different protecting measurements over winter[J]. China For Sci Technol, 2015, 29(6):76-79.DOI:10.13360/j.issn.1000-8101.2015.06.019.
[44]
BRESSAN A C G, SILVA G S, BANHOS O F A A, et al. Physiological,anatomical and ultrastructural effects of aluminum on Styrax camporum,a native Cerrado woody species[J]. J Plant Res, 2020, 133(5):625-637.DOI:10.1007/s10265-020-01210-2.
[45]
BANHOS O F A A, DE SOUZA M C, HABERMANN G. High aluminum availability may affect Styrax camporum,an Al non-accumulating species from the Brazilian savanna[J]. Theor Exp Plant Physiol, 2016, 28(3):321-332.DOI:10.1007/s40626-015-0051-5.
[46]
王丽艳, 刘光正, 孔凡斌, 等. 重金属铜、镉胁迫下东京野茉莉的生理响应[J]. 林业科技开发, 2014, 28(6):19-24.
WANG L Y, LIU G Z, KONG F B, et al. Physiology response of Styrax tonkinensis to heavy Cu and Cd metal stress[J]. China For Sci Technol, 2014, 28(6):19-24.DOI:10.13360/j.issn.1000-8101.2014.06.005.
[47]
HU W L, LI Z L, CHEN Q J, et al. Triterpenes and lignans from the leaves of Styrax tonkinensis[J]. Biochem Syst Ecol, 2019, 86:103891.DOI:10.1016/j.bse.2019.04.009.
[48]
万俊鹏, 崔义真, 喻方圆. 东京野茉莉重要化学成分的时空分布研究[J]. 西南林业大学学报(自然科学), 2018, 38(1):157-161.
WAN J P, CUI Y Z, YU F Y. Spatial and temporal distribution of the important chemical components in Styrax tonkinensis[J]. J Southwest For Univ (Nat Sci), 2018, 38(1):157-161.DOI:10.11929/j.issn.2095-1914.2018.01.024.
[49]
LIU B L, DING W B, HUANG S Y, et al. Chemotaxonomic significance of phenylpropanoids from Styrax suberifolius Hook.Et Arn[J]. Biochem Syst Ecol, 2018, 78:35-38.DOI:10.1016/j.bse.2018.03.006.
[50]
CAO H Q, LEE B M, JUNG Y W, et al. Cytotoxic activity of compounds from Styrax obassia[J]. Nat Prod Commun, 2017, 12(2):259-260.
[51]
胡攀, 夏厚林, 李瑞煜, 等. 安息香中苯甲酸松柏酯的分离鉴定及药效考察[J]. 中国实验方剂学杂志, 2016, 22(13):55-58.
HU P, XIA H L, LI R Y, et al. Isolation,identification and efficacy of coniferyl benzoate from benzoin[J]. Chin J Exp Tradit Med Formulae, 2016, 22(13):55-58.DOI:10.13422/j.cnki.syfjx.2016130055.
[52]
WANG F, WANG Y B, CHEN H, et al. Two new triterpenoids from the resin of Styrax tonkinensis[J]. J Asian Nat Prod Res, 2015, 17(8):823-827.DOI:10.1080/10286020.2015.1030399.
[53]
LEE S J, LEE J, SONG S, et al. Glycoprotein isolated from Styrax japonica Siebold et al.Zuccarini inhibits oxidative and pro-inflammatory responses in HCT116 colonic epithelial cells and dextran sulfate sodium-treated ICR mice[J]. Food Chem Toxicol, 2016, 87:12-22.DOI:10.1016/j.fct.2015.11.004.
[54]
LEE J, LIM K T. Normalizing effect of SJSZ glycoprotein (38 kDa) on proliferating cell nuclear antigen and interferon-γ in diethylnitrosamine-induced mice splenocytes[J]. J Cell Biochem, 2013, 114(4):808-815.DOI:10.1002/jcb.24419.
[55]
ZHANG Z H, WANG X J, LUO Y, et al. Carbon competition between fatty acids and starch during benzoin seeds maturation slows oil accumulation speed[J]. Trees, 2017, 31(3):1025-1039.DOI:10.1007/s00468-017-1528-4.
[56]
WU Q K, CAO Y Y, CHEN C, et al. Transcriptome analysis of metabolic pathways associated with oil accumulation in developing seed kernels of Styrax tonkinensis,a woody biodiesel species[J]. BMC Plant Biol, 2020, 20(1):121.DOI:10.1186/s12870-020-2327-4.
[57]
WU Q K, CHEN C, WANG X J, et al. Proteomic analysis of metabolic mechanisms associated with fatty acid biosynthesis during Styrax tonkinensis kernel development[J]. J Sci Food Agric, 2021, 101(14):6053-6063.DOI10.1002/jsfa.11262.
[58]
ZHANG Z H, LUO Y, WANG X J, et al. Quantitative spatiotemporal oil body ultrastructure helps to verify the distinct lipid deposition patterns in benzoin endosperm and embryo cells[J]. Forests, 2018, 9(5):265.DOI:10.3390/f9050265.
[59]
MATSUO M, SUJAN K, HIROTA I, et al. Utilisation of Styrax tonkinensis wood in Laos and its physical properties[J]. J Trop For Sci, 2016, 28(3):298-307.
[60]
骆昱春, 杨桦, 曾志光, 等. 东京野茉莉木材性质分析与利用[J]. 江西农业大学学报, 2007, 29(1):77-80.
LUO Y C, YANG H, ZENG Z G, et al. Analysis of wood properties of Styrax tonkinensis and its utilization[J]. Acta Agric Univ Jiangxiensis, 2007, 29(1):77-80.DOI:10.3969/j.issn.1000-2286.2007.01.016.
[61]
TUONG V M, HUYEN N V, KIEN N T, et al. Durable Epoxy@ZnO coating for improvement of hydrophobicity and color stability of wood[J]. Polymers, 2019, 11(9):1388.DOI:10.3390/polym11091388.
[62]
胡文杰, 司志国, 曹裕松, 等. 东京野茉莉油制备生物柴油的工艺条件研究[J]. 江苏农业科学, 2011, 39(2):380-382.
HU W J, SI Z G, CAO Y S, et al. Study on the technological conditions of preparing biodiesel from Styrax tonkinensis seed oil[J]. Jiangsu Agric Sci, 2011, 39(2):380-382.DOI:10.15889/j.issn.1002-1302.2011.02.021.
[63]
陈伟, 李林检, 刘光斌, 等. 响应面法优化东京野茉莉油制备生物柴油的工艺研究[J]. 广州化工, 2015, 43(1):46-49,58.
CHEN W, LI L J, LIU G B, et al. Response surface methodology to optimize production of biodiesel from Styrax tonkinensis[J]. Guangzhou Chem Ind, 2015, 43(1):46-49,58.DOI:10.3969/j.issn.1001-9677.2015.01.017.
[64]
WANG Y G, NIE X A, LIU Z X. Biodiesel synthesis from Styrax confusus Hemsl catalyzed by S2O82-/ZrO2-TiO2-Fe3O4[J]. J Am Oil Chem Soc, 2015, 92(6):813-820.DOI:10.1007/s11746-015-2647-y.
[65]
吴永清, 黄嘉琦, 胡秀, 等. 白花龙扦插繁殖研究[J]. 仲恺农业工程学院学报, 2018, 31(4):30-34.
WU Y Q, HUANG J Q, HU X, et al. Propagation research of cutting Styrax faeri Perk[J]. J Zhongkai Univ Agric Eng, 2018, 31(4):30-34.DOI:10.3969/j.issn.1674-5663.2018.04.006.
[66]
刘郁林, 廖忠明, 黄红兰, 等. 越南安息香嫩枝扦插生根技术[J]. 林业科技通讯, 2020(10):72-75.
LIU Y L, LIAO Z M, HUANG H L, et al. Twig cutting and rooting technology of Styrax tonkinensis[J]. For Sci Technol, 2020(10):72-75.DOI:10.13456/j.cnki.lykt.2019.10.27.0002.
[67]
谭柏韬, 张斌, 谭思佳, 等. 野茉莉嫩枝扦插繁殖试验[J]. 湖南林业科技, 2018, 45(2):6-9.
TAN B T, ZHANG B, TAN S J, et al. Cuttage propagation experiment of Styrax japonicus[J]. Hunan For Sci Technol, 2018, 45(2):6-9.DOI:10.3969/j.issn.1003-5710.2018.02.002.
[68]
诸葛菲, 陈鑫, 臧巧路, 等. 垂珠花组织培养技术初探[J]. 分子植物育种, 2018, 16(11):3656-3660.
ZHUGE F, CHEN X, ZANG Q L, et al. A preliminary study on the rapid propagation of Styrax dasyanthus[J]. Mol Plant Breed, 2018, 16(11):3656-3660. DOI:10.13271/j.mpb.016.003656.
[69]
袁芳, 葛正开, 诸葛菲, 等. 芬芳安息香组培快繁体系的建立[J]. 分子植物育种, 2019, 17(17):5763-5768.
YUAN F, GE Z K, ZHUGE F, et al. Establishment of tissue culture and rapid propagation system of Styrax odoratissimus[J]. Mol Plant Breed, 2019, 17(17):5763-5768.DOI:10.13271/j.mpb.017.005763.
PDF(1479 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/