JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (2): 35-43.doi: 10.12302/j.issn.1000-2006.202012016
Special Issue: “双碳”视域下的生态系统固碳增汇
Previous Articles Next Articles
LIU Ke1(), LI Mingyang1,*(), LI Ling2,*(), TIAN Kang3, FAN Ya’nan3, WANG Zhigang4, QU Mingkai3, HUANG Biao3
Received:
2020-12-19
Accepted:
2021-12-14
Online:
2022-03-30
Published:
2022-04-08
Contact:
LI Mingyang,LI Ling
E-mail:2489838513@qq.com;lmy196727@126.com;haodou_25@126.com
CLC Number:
LIU Ke, LI Mingyang, LI Ling, TIAN Kang, FAN Ya’nan, WANG Zhigang, QU Mingkai, HUANG Biao. Spatial heterogeneity of the soil organic carbon density and its driving factors in the water source area of the Middle Route of China South-to-North Water Diversion Project[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(2): 35-43.
Table 1
The SOCD and carbon storage of different soil types in the water source area of the Middle Route of China South-to-North Water Diversion Project"
土壤类型 soil type | 海拔/m elevation | 面积/ ×106 hm2 area | 面积 占比/% area proportion | 土壤有机碳密度/(kg·m-2) SOCD | 0~20 cm 碳储量/Pg carbon storage in 0~20 cm | 储量占比/% carbon storage percentage | |
---|---|---|---|---|---|---|---|
0~20 cm | ≥20~40 cm | ||||||
暗棕壤 dark-brown earths | ≥1 500~ 2 000 | 0.058 | 0.60 | 5.09±2.27 Aa | 2.31±0.75 Bb | 0.029 | 0.76 |
棕壤 brown earths | ≥1 000~ 1 500 | 1.565 | 16.44 | 5.21±2.66 Aa | 3.69±2.23 Ba | 0.815 | 21.05 |
褐土 cinnamon soils | 0.097 | 1.02 | 3.35±1.71 Ab | 2.15±0.83 Bb | 0.033 | 0.84 | |
黄褐土 yellow-cinnamon soils | ≥500~ 1 000 | 0.711 | 7.46 | 3.36±1.88 Ab | 2.66±1.29 Bab | 0.239 | 6.17 |
石灰(岩)土 limestone soils | 0.454 | 4.77 | 5.44±2.51 Aa | 3.20±1.65 Ba | 0.247 | 6.38 | |
粗骨土 skeletal soils | 0.636 | 6.68 | 3.72±1.49 Ab | 2.20±0.81 Bb | 0.236 | 6.10 | |
黄棕壤 yellow-brown earths | 5.138 | 53.97 | 3.93±2.19 Ab | 2.49±1.42 Bb | 2.005 | 51.78 | |
水稻土 paddy soils | 0.267 | 2.81 | 4.64±3.58 Aa | 1.82±0.80 Bbc | 0.124 | 3.20 | |
新积土 neo-alluvial soils | 0.251 | 2.64 | 3.57±2.55 Ab | 1.50±0.68 Bc | 0.090 | 2.31 | |
紫色土 purplish soils | 0.152 | 1.60 | 3.60±1.15 Ab | 2.02±0.52 Bb | 0.055 | 1.41 |
Table 2
The SOCD in different land use types of the water source area of the Middle Route of China South-to-North Water Diversion Project"
土地利用类型 land use type | 面积/ ×104 hm2 area | 面积 占比/% area percentage | 土壤有机碳密度变幅/ (kg·m-2) SOCD variation range | 土壤有机碳密度/ (kg·m-2) SOCD | 0~20 cm 碳储量/Pg carbon storage in 0~20 cm | 碳储量占比/% carbon storage percentage | ||
---|---|---|---|---|---|---|---|---|
0~20 cm | ≥20~40 cm | 0~20 cm | ≥20~40 cm | |||||
林地 forest | 736.691 | 77.380 | 1.33~17.07 | 0.31~13.75 | 4.87±2.38 Aa | 3.05±1.75 Ba | 3.590 0 | 87.48 |
灌丛 bushwood | 0.092 | 0.009 | 0.60~9.91 | 1.11~5.65 | 4.55±2.57 Aa | 2.59±1.19 Bb | 0.000 4 | 0.01 |
农田 cropland | 179.030 | 18.810 | 0.75~6.71 | 0.37~6.11 | 2.75±1.09 Ab | 2.00±0.93 Bc | 0.490 0 | 12.02 |
草地 grassland | 13.901 | 1.460 | 0.29~ 6.69 | 0.21~3.37 | 1.45±1.41 Ac | 1.15±0.84 Bd | 0.022 0 | 0.49 |
Table 3
The SOCD of different forest types SOCD in different land use types of the water source area of the Middle Route of China South-to-North Water Diversion Project"
森林类型 forest type | 土壤有机碳密度变幅/(kg·m-2) SOCD variation range | 土壤有机碳密度/(kg·m-2) SOCD | 变异系数/% coefficient of variation | |||
---|---|---|---|---|---|---|
0~20 cm | ≥20~40 cm | 0~20 cm | ≥20~40 cm | 0~20 cm | ≥20~40 cm | |
阔叶林broad-leaf forest | 1.47~17.07 | 0.60~8.73 | 5.35±2.48 Aa | 3.25±1.66 Ba | 46.36 | 51.11 |
针叶林coniferous forest | 1.87~12.39 | 0.31~5.87 | 4.43±2.43 Ab | 2.65±1.36 Bb | 54.92 | 51.40 |
混交林mixed forest | 1.68~15.22 | 0.83~13.75 | 4.53±2.36 Aab | 2.80±2.03 Bab | 52.11 | 72.68 |
Table 4
Interaction values and effects of SOCD influencing factors of different land use types of the water source area of the Middle Route of China South-to-North Water Diversion Project"
交互因子 interaction factor | 土地利用 land use | 海拔 elevation | 土壤类型 soil type | 黏粒 clay | 砂粒 sandy | 容重 bulk density |
---|---|---|---|---|---|---|
海拔elevation | 0.35↑ | |||||
土壤类型soil type | 0.26↑ | 0.32↑↑ | ||||
黏粒clay | 0.30↑ | 0.33↑ | 0.23↑↑ | |||
砂粒sandy | 0.29↑↑ | 0.32↑ | 0.18↑↑ | 0.15↑ | ||
容重bulk density | 0.27↑↑ | 0.34↑↑ | 0.18↑↑ | 0.19↑↑ | 0.20↑↑ | |
pH | 0.25↑ | 0.29↑ | 0.21↑↑ | 0.23↑↑ | 0.18↑↑ | 0.22↑↑ |
[1] |
SANTINI N S, ADAME M F, NOLAN R H, et al. Storage of organic carbon in the soils of Mexican temperate forests[J]. For Ecol Manag, 2019, 446:115-125. DOI: 10.1016/j.foreco.2019.05.029.
doi: 10.1016/j.foreco.2019.05.029 |
[2] |
LAL R, SMITH P, JUNGKUNST H F, et al. The carbon sequestration potential of terrestrial ecosystems[J]. J Soil Water Conserv, 2018, 73(6):145-152. DOI: 10.2489/jswc.73.6.145a.
doi: 10.2489/jswc.73.6.145a |
[3] |
ZIMMERMANN M, LEIFELD J, CONEN F, et al. Can composition and physical protection of soil organic matter explain soil respiration temperature sensitivity?[J]. Biogeochemistry, 2012, 107(1/2/3):423-436. DOI: 10.1007/s10533-010-9562-y.
doi: 10.1007/s10533-010-9562-y |
[4] |
DJUKIC I, ZEHETNER F, TATZBER M, et al. Soil organic-matter stocks and characteristics along an Alpine elevation gradient[J]. J Plant Nutr Soil Sci, 2010, 173(1):30-38. DOI: 10.1002/jpln.200900027.
doi: 10.1002/jpln.200900027 |
[5] | 卫玮, 党坤良. 秦岭南坡林地土壤有机碳密度空间分异特征[J]. 林业科学, 2019, 55(5):11-19. |
WEI W, DANG K L. Spatial variation of the density of soil organic carbon in forest land on the southern slope of Qinling Mountains[J]. Sci Silvae Sin, 2019, 55(5):11-19. DOI: 10.11707/j.1001-7488.20190502.
doi: 10.11707/j.1001-7488.20190502 |
|
[6] | 吴小刚, 王文平, 李斌, 等. 中亚热带森林土壤有机碳的海拔梯度变化[J]. 土壤学报, 2020, 57(6):1539-1547. |
WU X G, WANG W P, LI B, et al. Altitudinal gradient of soil organic carbon in forest soils in the mid-subtropical zone of China[J]. Acta Pedol Sin, 2020, 57(6):1539-1547. DOI: 10.11766/trxb201909300184.
doi: 10.11766/trxb201909300184 |
|
[7] | 杨玉盛, 谢锦升, 盛浩, 等. 中亚热带山区土地利用变化对土壤有机碳储量和质量的影响[J]. 地理学报, 2007, 62(11):1123-1131. |
YANG Y S, XIE J S, SHENG H, et al. The impact of land use/cover change on soil organic carbon stocks and quality in mid-subtropical mountainous area of southern China[J]. Acta Geogr Sin, 2007, 62(11):1123-1131. DOI: 10.3321/j.issn:0375-5444.2007.11.001.
doi: 10.3321/j.issn:0375-5444.2007.11.001 |
|
[8] | 梁晨, 安菁, 范雅倩, 等. 北京松山国家级自然保护区典型植被类型表层土壤碳密度及周转速率特征[J]. 地球与环境, 2020, 48(6):672-679. |
LIANG C, AN J, FAN Y Q, et al. Surface soil carbon density and turnover rate of typical vegetation types in Beijing Songshan National Nature Reserve[J]. Earth Environ, 2020, 48(6):672-679. DOI: 10.14050/j.cnki.1672-9250.2020.48.086.
doi: 10.14050/j.cnki.1672-9250.2020.48.086 |
|
[9] |
WANG L, CHEN W, HUANG G, et al. Changes of the transitional climate zone in East Asia: past and future[J]. Clim Dyn, 2017, 49(4):1463-1477. DOI: 10.1007/s00382-016-3400-4.
doi: 10.1007/s00382-016-3400-4 |
[10] | 周健民, 沈仁芳. 土壤学大辞典[Z]. 北京: 科学出版社, 2013. |
ZHOU J M, SHEN R F. Dictionary of soil science[Z]. Beijing: Science Press, 2013. | |
[11] | 张甘霖, 龚子同. 土壤调查实验室分析方法[M]. 北京: 科学出版社, 2012. |
ZHANG G L, GONG Z T. Soil survey laboratory methods[M]. Beijing: Science Press, 2012. | |
[12] |
RUBIN D B. Multiple imputation after 18+ years[J]. J Am Stat Assoc, 1996, 91(434):473-489. DOI: 10.1080/01621459.1996.10476908.
doi: 10.1080/01621459.1996.10476908 |
[13] |
王劲峰, 徐成东. 地理探测器:原理与展望[J]. 地理学报, 2017, 72(1):116-134.
doi: 10.11821/dlxb201701010 |
WANG J F, XU C D. Geodetector: principle and prospective[J]. Acta Geogr Sin, 2017, 72(1):116-134. DOI: 10.11821/dlxb201701010.
doi: 10.11821/dlxb201701010 |
|
[14] | 张彦军, 郁耀闯, 牛俊杰, 等. 秦岭太白山北坡土壤有机碳储量的海拔梯度格局[J]. 生态学报, 2020, 40(2):629-639. |
ZHANG Y J, YU Y C, NIU J J, et al. The elevational patterns of soil organic carbon storage on the northern slope of Taibai Mountain of Qinling[J]. Acta Ecologica Sinica, 2020, 40(2): 629-639. DOI: 10.5846/stxb201808031659.
doi: 10.5846/stxb201808031659 |
|
[15] | 解宪丽, 孙波, 周慧珍, 等. 不同植被下中国土壤有机碳的储量与影响因子[J]. 土壤学报, 2004, 41(5):687-699. |
XIE X L, SUN B, ZHOU H Z, et al. Soil carbon stocks and their influencing factors under native vegetations in China[J]. Acta Pedol Sin, 2004, 41(5):687-699. DOI: 10.11766/trxb200312090505.
doi: 10.11766/trxb200312090505 |
|
[16] | 薄会娟, 董晓华, 郭梁锋, 等. 湖北省土壤有机碳垂直分布及储量估算[J]. 环境科学与技术, 2018, 41(12):290-296. |
BO H J, DONG X H, GUO L F, et al. Vertical distribution and storage estimation of soil organic carbon in Hubei Province[J]. Environ Sci Technol, 2018, 41(12):290-296. DOI: 10.19672/j.cnki.1003-6504.2018.12.042.
doi: 10.19672/j.cnki.1003-6504.2018.12.042 |
|
[17] | 宋满珍, 刘琪璟, 吴自荣, 等. 江西省森林土壤有机碳储量研究[J]. 南京林业大学学报(自然科学版), 2010, 34(2):6-10. |
SONG M Z, LIU Q J, WU Z R, et al. Organic carbon storage of forest soil in Jiangxi Province[J]. J Nanjing For Univ (Nat Sci Ed), 2010, 34(2):6-10. DOI: 10.3969/j.issn.1,000-2006.2010.02.002.
doi: 10.3969/j.issn.1,000-2006.2010.02.002 |
|
[18] |
GHOSH A, BHATTACHARYYA R, MEENA M C, et al. Long-term fertilization effects on soil organic carbon sequestration in an inceptisol[J]. Soil and Tillage Research, 2018, 177: 134-144. DOI: 10.1016/j.still.2017.12.006.
doi: 10.1016/j.still.2017.12.006 |
[19] |
HOYLE F C, D’ANTUONO M, OVERHOU T, et al. Capacity for increasing soil organic carbon stocks in dryland agricultural systems[J]. Soil Research, 2013, 51(7-8): 657-667. DOI: 10.1071/SR12373.
doi: 10.1071/SR12373 |
[20] | 秦海龙, 贾重建, 卢瑛, 等. 广东罗浮山土壤有机碳储量与组分垂直分布特征[J]. 西南林业大学学报(自然科学), 2018, 38(3):108-115. |
QIN H L, JIA C J, LU Y, et al. The vertical distribution characteristics of soil organic carbon stocks and fractions in Luofu Mountain of Guangdong[J]. J Southwest For Univ (Nat Sci), 2018, 38(3):108-115. DOI: 10.11929/j.issn.2095-1914.2018.03.016.
doi: 10.11929/j.issn.2095-1914.2018.03.016 |
|
[21] | 丁访军, 高艳平, 周凤娇, 等. 贵州西部4种林型土壤有机碳及其剖面分布特征[J]. 生态环境学报, 2012, 21(1):38-43. |
DING F J, GAO Y P, ZHOU F J, et al. Soil organic carbon and its distribution characteristics in the soil profile for four forest types in west Guizhou[J]. Ecol Environ Sci, 2012, 21(1):38-43. DOI: 10.16258/j.cnki.1674-5906.2012.01.014.
doi: 10.16258/j.cnki.1674-5906.2012.01.014 |
|
[22] | 杨苏, 李传哲, 王静, 等. 有机物料投入对作物产量及潮土固碳的影响[J]. 江苏农业学报, 2020(3):569-576. |
YANG S, LI C Z, WANG J, et al. Effects of organic material input on crop yield and carbon sequestration in tidal soil[J]. 2020(3):569-576. DOI: 10.3969/j.issn.1000-4440.2020.03.006.
doi: 10.3969/j.issn.1000-4440.2020.03.006 |
|
[23] | 罗梅, 郭龙, 张海涛, 等. 基于环境变量的中国土壤有机碳空间分布特征[J]. 土壤学报, 2020, 57(1):48-59. |
LUO M, GUO L, ZHANG H T, et al.Characterization of spatial distribution of soil organic carbon in China based on environmental variables[J]. Acta Pedologica Sinica, 2020, 57(1):48-59. DOI: 10.11766/trxb201812110454.
doi: 10.11766/trxb201812110454 |
|
[24] |
LI Z W, LIU C, DONG Y T, et al. Response of soil organic carbon and nitrogen stocks to soil erosion and land use types in the Loess hilly-gully region of China[J]. Soil Tillage Res, 2017, 166:1-9. DOI: 10.1016/j.still.2016.10.004.
doi: 10.1016/j.still.2016.10.004 |
[25] | 李志安, 邹碧, 丁永祯, 等. 森林凋落物分解重要影响因子及其研究进展[J]. 生态学杂志, 2004, 23(6):77-83. |
LI Z A, ZOU B, DING Y Z, et al. Key factors of forest litter decomposition and research progress[J]. Chin J Ecol, 2004, 23(6):77-83. DOI: 10.13292/j.1,000-4890.2004.0204.
doi: 10.13292/j.1,000-4890.2004.0204 |
|
[26] | 肖欣, 王雄涛, 欧阳勋志. 马尾松人工林土壤有机碳特征及其与凋落物质量的关系[J]. 南京林业大学学报(自然科学版), 2015, 39(6):105-111. |
XIAO X, WANG X T, OUYANG X Z. The characteristic of soil organic carbon and relationship with litter quality in Pinus massoniana plantation[J]. J Nanjing For Univ (Nat Sci Ed), 2015, 39(6):105-111. DOI: 10.3969/j.issn.1,000-2006.2015.06.019.
doi: 10.3969/j.issn.1,000-2006.2015.06.019 |
|
[27] |
DING J, LI F, YANG G, et al. The permafrost carbon inventory on the Tibetan plateau:a new evaluation using deep sediment cores[J]. Glob Chang Biol, 2016, 22(8):2688-2701. DOI: 10.1111/gcb.13257.
doi: 10.1111/gcb.13257 |
[28] | 吴小刚, 王文平, 李斌, 等. 中亚热带森林土壤有机碳的海拔梯度变化[J]. 土壤学报, 2020, 57(6):1539-1547. |
WU X G, WANG W P, LI B, et al.. Altitudinal gradient of soil organic carbon in forest soils in the mid-subtropical zone of China[J]. Acta Pedologica Sinica, 2020, 57(6):1539-1547. DOI: 10.11766/trxb201909300184
doi: 10.11766/trxb201909300184 |
|
[29] | 李龙, 姚云峰, 秦富仓, 等. 赤峰市小流域地形因子对土壤有机碳密度的影响[J]. 中国水土保持, 2014(3):43-46. |
LI L, YAO Y F, QIN F C, et al. Effects of topographic factors on soil organic carbon density in small watershed of Chifeng City[J]. Soil Water Conserv China, 2014(3):43-46. DOI: 10.14123/j.cnki.swcc.2014.03.016.
doi: 10.14123/j.cnki.swcc.2014.03.016 |
[1] | WANG Qisong, GUO Qingxi. The spatial distribution characteristics of light intensity attenuation under natural secondary forests in eastern Jilin Province, China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(1): 101-108. |
[2] | HUANG Liangshuai, HAN Hairong, NIU Shukui, CHENG Xiaoqin, ZHOU Wensong. Spatial heterogeneity of canopy photosynthesis in Larix principis-rupprechtii Mayr. Plantations [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2017, 41(02): 193-197. |
[3] | SHI Lei, SHENG Houcai, MAN Xiuling, CAI Tijiu. Rainfall redistribution and the spatial heterogeneity of throughfall in Larix gmelinii forest, northeast China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2017, 41(02): 90-96. |
[4] | LI Cheng, LUO Peng, LI Zhiqing. Spatial heterogeneity of diameter at breast height growth for Korean pine natural forest and its relationships with terrain factors [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2017, 41(01): 129-135. |
[5] | HAN Huiqing,LUO Xuqiang,YOU Renlong,LUO Xiaoshan,CHEN Yao. Analysis of water purification function in the Pearl River basin in Guizhou Province using InVEST model [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2016, 40(05): 87-92. |
[6] | XIE Meisi,ZHAO Chen. Study on spatial heterogeneity of road-region vegetation ecosystem based on fractal theory [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2014, 38(06): 81-86. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||