Spatial heterogeneity of the soil organic carbon density and its driving factors in the water source area of the Middle Route of China South-to-North Water Diversion Project

LIU Ke, LI Mingyang, LI Ling, TIAN Kang, FAN Ya’nan, WANG Zhigang, QU Mingkai, HUANG Biao

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (2) : 35-43.

PDF(13025 KB)
PDF(13025 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (2) : 35-43. DOI: 10.12302/j.issn.1000-2006.202012016

Spatial heterogeneity of the soil organic carbon density and its driving factors in the water source area of the Middle Route of China South-to-North Water Diversion Project

Author information +
History +

Abstract

【Objective】The aim of analyzing the spatial distribution characteristics and driving factors of soil organic carbon density on a large spatial scale in the water source area of the Middle Route of China South-to-North Water Diversion Project is to reveal its spatial differences and the changes with the altitude, soil types, land use, and forest types. This work should provide a scientific basis for the rational utilization of land resources and soil organic carbon (SOC) management in the area. The spatial distribution and driving factors of soil organic carbon density (SOCD) were explored to provide a scientific basis for the accurate assessment of the ecosystem carbon cycle in the climate transition zone.【Method】Based on a comprehensive assessment of spatial factors such as the elevation, soil types, and land use, the spatial variations of SOCD in this region were evaluated by the field sampling and indoor analysis with the help of a geographic information system (GIS). In addition, the main driving factors affecting the spatial distribution of SOCD in the study area were determined by analyzing the explanatory power of various influencing factors on soil organic carbon density and the difference in the degree of interaction among various factors using the geographic detector model. 【Result】(1)The results showed that the average SOCD in 0-20 cm and ≥20-40 cm soil layers was 4.18 kg/m2 and 2.67 kg/m2 respectively, in which the SOCD of 0-20 cm soil layer was 56.55% higher than the national average level (2.67 kg/m2).(2)Over the entire region, the SOCD was higher in forests in the northern and southern areas and lower in farmlands and grasslands in the middle area. The soil organic carbon density greater than 10 kg/m2 is concentrated in the forest land with an altitude of ≥1 500-2 000 m, and less than 1 kg/m2 is concentrated in grasslands with altitudes <500 m. The SOCD first increased and then decreased with an increasing elevation. The SOCD of 0-20 cm and ≥20-40 cm soil layers showed peak values (7.32 kg/m2 and 4.94 kg/m2) at an altitude of ≥1 500-2 000 m. In terms of soil types, the average SOCD of limestone soil is the greatest and that of cinnamon soils is the smallest. The SOCD storage of yellow-brown earths and brown earths in the 0-20 cm soil layer was the highest, 2.005 Pg and 0.815 Pg, respectively, accounting for 72.83% of the total storage. In terms of land-use types, the forest and farmland were the main land-use types. The SOCD of 0-20 cm and ≥20-40 cm soil layers in the forest land were 4.87 kg/m2 and 3.05 kg/m2, respectively, and that of farmlands were 2.75 kg/m2 and 2.00 kg/m2, respectively. These levels were 77.09% and 52.50% lower than that of the forest land, and the SOC storage of the forest land accounted for 87.48% of the total C storage, followed by farmlands (12.02%).(3)The most powerful explanation for the spatial distribution of SOCD was the altitude (0.25) and land use (0.20), followed by soil clay (0.11). The explanatory power of the different driving factors under interaction was significantly higher than that of a single factor. 【Conclusion】The altitude and land use were the main driving factors affecting the spatial patterns of SOCD in this region. After the interaction of different driving factors, there was a synergistic effect of the two factors. The SOCD of farmlands was significantly lower than that of the forest land. Therefore, the ecological engineering construction in the study area should be strengthened, the forest protection and vegetation restoration should be carried out, and the soil carbon storage capacity of the water source in the Middle Route of China South-to-North Water Diversion Project should be improved.

Key words

soil organic carbon density(SOCD) / spatial heterogeneity / geographic detector model / the water source area / the Middle Route of China South-to-North Water Diversion Project

Cite this article

Download Citations
LIU Ke , LI Mingyang , LI Ling , et al . Spatial heterogeneity of the soil organic carbon density and its driving factors in the water source area of the Middle Route of China South-to-North Water Diversion Project[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2022, 46(2): 35-43 https://doi.org/10.12302/j.issn.1000-2006.202012016

References

[1]
SANTINI N S, ADAME M F, NOLAN R H, et al. Storage of organic carbon in the soils of Mexican temperate forests[J]. For Ecol Manag, 2019, 446:115-125. DOI: 10.1016/j.foreco.2019.05.029.
[2]
LAL R, SMITH P, JUNGKUNST H F, et al. The carbon sequestration potential of terrestrial ecosystems[J]. J Soil Water Conserv, 2018, 73(6):145-152. DOI: 10.2489/jswc.73.6.145a.
[3]
ZIMMERMANN M, LEIFELD J, CONEN F, et al. Can composition and physical protection of soil organic matter explain soil respiration temperature sensitivity?[J]. Biogeochemistry, 2012, 107(1/2/3):423-436. DOI: 10.1007/s10533-010-9562-y.
[4]
DJUKIC I, ZEHETNER F, TATZBER M, et al. Soil organic-matter stocks and characteristics along an Alpine elevation gradient[J]. J Plant Nutr Soil Sci, 2010, 173(1):30-38. DOI: 10.1002/jpln.200900027.
[5]
卫玮, 党坤良. 秦岭南坡林地土壤有机碳密度空间分异特征[J]. 林业科学, 2019, 55(5):11-19.
WEI W, DANG K L. Spatial variation of the density of soil organic carbon in forest land on the southern slope of Qinling Mountains[J]. Sci Silvae Sin, 2019, 55(5):11-19. DOI: 10.11707/j.1001-7488.20190502.
[6]
吴小刚, 王文平, 李斌, 等. 中亚热带森林土壤有机碳的海拔梯度变化[J]. 土壤学报, 2020, 57(6):1539-1547.
WU X G, WANG W P, LI B, et al. Altitudinal gradient of soil organic carbon in forest soils in the mid-subtropical zone of China[J]. Acta Pedol Sin, 2020, 57(6):1539-1547. DOI: 10.11766/trxb201909300184.
[7]
杨玉盛, 谢锦升, 盛浩, 等. 中亚热带山区土地利用变化对土壤有机碳储量和质量的影响[J]. 地理学报, 2007, 62(11):1123-1131.
YANG Y S, XIE J S, SHENG H, et al. The impact of land use/cover change on soil organic carbon stocks and quality in mid-subtropical mountainous area of southern China[J]. Acta Geogr Sin, 2007, 62(11):1123-1131. DOI: 10.3321/j.issn:0375-5444.2007.11.001.
[8]
梁晨, 安菁, 范雅倩, 等. 北京松山国家级自然保护区典型植被类型表层土壤碳密度及周转速率特征[J]. 地球与环境, 2020, 48(6):672-679.
LIANG C, AN J, FAN Y Q, et al. Surface soil carbon density and turnover rate of typical vegetation types in Beijing Songshan National Nature Reserve[J]. Earth Environ, 2020, 48(6):672-679. DOI: 10.14050/j.cnki.1672-9250.2020.48.086.
[9]
WANG L, CHEN W, HUANG G, et al. Changes of the transitional climate zone in East Asia: past and future[J]. Clim Dyn, 2017, 49(4):1463-1477. DOI: 10.1007/s00382-016-3400-4.
[10]
周健民, 沈仁芳. 土壤学大辞典[Z]. 北京: 科学出版社, 2013.
ZHOU J M, SHEN R F. Dictionary of soil science[Z]. Beijing: Science Press, 2013.
[11]
张甘霖, 龚子同. 土壤调查实验室分析方法[M]. 北京: 科学出版社, 2012.
ZHANG G L, GONG Z T. Soil survey laboratory methods[M]. Beijing: Science Press, 2012.
[12]
RUBIN D B. Multiple imputation after 18+ years[J]. J Am Stat Assoc, 1996, 91(434):473-489. DOI: 10.1080/01621459.1996.10476908.
[13]
王劲峰, 徐成东. 地理探测器:原理与展望[J]. 地理学报, 2017, 72(1):116-134.
Abstract
空间分异是自然和社会经济过程的空间表现,也是自亚里士多德以来人类认识自然的重要途径。地理探测器是探测空间分异性,以及揭示其背后驱动因子的一种新的统计学方法,此方法无线性假设,具有优雅的形式和明确的物理含义。基本思想是:假设研究区分为若干子区域,如果子区域的方差之和小于区域总方差,则存在空间分异性;如果两变量的空间分布趋于一致,则两者存在统计关联性。地理探测器q统计量,可用以度量空间分异性、探测解释因子、分析变量之间交互关系,已经在自然和社会科学多领域应用。本文阐述地理探测器的原理,并对其特点及应用进行了归纳总结,以利于读者方便灵活地使用地理探测器来认识、挖掘和利用空间分异性。
WANG J F, XU C D. Geodetector: principle and prospective[J]. Acta Geogr Sin, 2017, 72(1):116-134. DOI: 10.11821/dlxb201701010.
[14]
张彦军, 郁耀闯, 牛俊杰, 等. 秦岭太白山北坡土壤有机碳储量的海拔梯度格局[J]. 生态学报, 2020, 40(2):629-639.
ZHANG Y J, YU Y C, NIU J J, et al. The elevational patterns of soil organic carbon storage on the northern slope of Taibai Mountain of Qinling[J]. Acta Ecologica Sinica, 2020, 40(2): 629-639. DOI: 10.5846/stxb201808031659.
[15]
解宪丽, 孙波, 周慧珍, 等. 不同植被下中国土壤有机碳的储量与影响因子[J]. 土壤学报, 2004, 41(5):687-699.
XIE X L, SUN B, ZHOU H Z, et al. Soil carbon stocks and their influencing factors under native vegetations in China[J]. Acta Pedol Sin, 2004, 41(5):687-699. DOI: 10.11766/trxb200312090505.
[16]
薄会娟, 董晓华, 郭梁锋, 等. 湖北省土壤有机碳垂直分布及储量估算[J]. 环境科学与技术, 2018, 41(12):290-296.
BO H J, DONG X H, GUO L F, et al. Vertical distribution and storage estimation of soil organic carbon in Hubei Province[J]. Environ Sci Technol, 2018, 41(12):290-296. DOI: 10.19672/j.cnki.1003-6504.2018.12.042.
[17]
宋满珍, 刘琪璟, 吴自荣, 等. 江西省森林土壤有机碳储量研究[J]. 南京林业大学学报(自然科学版), 2010, 34(2):6-10.
SONG M Z, LIU Q J, WU Z R, et al. Organic carbon storage of forest soil in Jiangxi Province[J]. J Nanjing For Univ (Nat Sci Ed), 2010, 34(2):6-10. DOI: 10.3969/j.issn.1,000-2006.2010.02.002.
[18]
GHOSH A, BHATTACHARYYA R, MEENA M C, et al. Long-term fertilization effects on soil organic carbon sequestration in an inceptisol[J]. Soil and Tillage Research, 2018, 177: 134-144. DOI: 10.1016/j.still.2017.12.006.
[19]
HOYLE F C, D’ANTUONO M, OVERHOU T, et al. Capacity for increasing soil organic carbon stocks in dryland agricultural systems[J]. Soil Research, 2013, 51(7-8): 657-667. DOI: 10.1071/SR12373.
[20]
秦海龙, 贾重建, 卢瑛, 等. 广东罗浮山土壤有机碳储量与组分垂直分布特征[J]. 西南林业大学学报(自然科学), 2018, 38(3):108-115.
QIN H L, JIA C J, LU Y, et al. The vertical distribution characteristics of soil organic carbon stocks and fractions in Luofu Mountain of Guangdong[J]. J Southwest For Univ (Nat Sci), 2018, 38(3):108-115. DOI: 10.11929/j.issn.2095-1914.2018.03.016.
[21]
丁访军, 高艳平, 周凤娇, 等. 贵州西部4种林型土壤有机碳及其剖面分布特征[J]. 生态环境学报, 2012, 21(1):38-43.
DING F J, GAO Y P, ZHOU F J, et al. Soil organic carbon and its distribution characteristics in the soil profile for four forest types in west Guizhou[J]. Ecol Environ Sci, 2012, 21(1):38-43. DOI: 10.16258/j.cnki.1674-5906.2012.01.014.
[22]
杨苏, 李传哲, 王静, 等. 有机物料投入对作物产量及潮土固碳的影响[J]. 江苏农业学报, 2020(3):569-576.
YANG S, LI C Z, WANG J, et al. Effects of organic material input on crop yield and carbon sequestration in tidal soil[J]. 2020(3):569-576. DOI: 10.3969/j.issn.1000-4440.2020.03.006.
[23]
罗梅, 郭龙, 张海涛, 等. 基于环境变量的中国土壤有机碳空间分布特征[J]. 土壤学报, 2020, 57(1):48-59.
LUO M, GUO L, ZHANG H T, et al. Characterization of spatial distribution of soil organic carbon in China based on environmental variables[J]. Acta Pedologica Sinica, 2020, 57(1):48-59. DOI: 10.11766/trxb201812110454.
[24]
LI Z W, LIU C, DONG Y T, et al. Response of soil organic carbon and nitrogen stocks to soil erosion and land use types in the Loess hilly-gully region of China[J]. Soil Tillage Res, 2017, 166:1-9. DOI: 10.1016/j.still.2016.10.004.
[25]
李志安, 邹碧, 丁永祯, 等. 森林凋落物分解重要影响因子及其研究进展[J]. 生态学杂志, 2004, 23(6):77-83.
LI Z A, ZOU B, DING Y Z, et al. Key factors of forest litter decomposition and research progress[J]. Chin J Ecol, 2004, 23(6):77-83. DOI: 10.13292/j.1,000-4890.2004.0204.
[26]
肖欣, 王雄涛, 欧阳勋志. 马尾松人工林土壤有机碳特征及其与凋落物质量的关系[J]. 南京林业大学学报(自然科学版), 2015, 39(6):105-111.
XIAO X, WANG X T, OUYANG X Z. The characteristic of soil organic carbon and relationship with litter quality in Pinus massoniana plantation[J]. J Nanjing For Univ (Nat Sci Ed), 2015, 39(6):105-111. DOI: 10.3969/j.issn.1,000-2006.2015.06.019.
[27]
DING J, LI F, YANG G, et al. The permafrost carbon inventory on the Tibetan plateau:a new evaluation using deep sediment cores[J]. Glob Chang Biol, 2016, 22(8):2688-2701. DOI: 10.1111/gcb.13257.
[28]
吴小刚, 王文平, 李斌, 等. 中亚热带森林土壤有机碳的海拔梯度变化[J]. 土壤学报, 2020, 57(6):1539-1547.
WU X G, WANG W P, LI B, et al.. Altitudinal gradient of soil organic carbon in forest soils in the mid-subtropical zone of China[J]. Acta Pedologica Sinica, 2020, 57(6):1539-1547. DOI: 10.11766/trxb201909300184
[29]
李龙, 姚云峰, 秦富仓, 等. 赤峰市小流域地形因子对土壤有机碳密度的影响[J]. 中国水土保持, 2014(3):43-46.
LI L, YAO Y F, QIN F C, et al. Effects of topographic factors on soil organic carbon density in small watershed of Chifeng City[J]. Soil Water Conserv China, 2014(3):43-46. DOI: 10.14123/j.cnki.swcc.2014.03.016.
PDF(13025 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/