Induced growth and salt tolerance of alfalfa by rhizobium strains from the rhizosphere of Haloxylon ammodendron

CHEN Jia, GOU Jingyi, ZHAO Qi, HAN Qingqing, LI Huiping, YAO Dan, ZHANG Jinlin

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2021, Vol. 45 ›› Issue (6) : 99-110.

PDF(4052 KB)
PDF(4052 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2021, Vol. 45 ›› Issue (6) : 99-110. DOI: 10.12302/j.issn.1000-2006.202012040

Induced growth and salt tolerance of alfalfa by rhizobium strains from the rhizosphere of Haloxylon ammodendron

Author information +
History +

Abstract

【Objective】Soil salinity is one of major abiotic stress factors that reduce plant productivity and restrict agricultural development. Symbiotic nitrogen fixation of legume-rhizobium is very sensitive to soil salinity. Haloxylon ammodendron is a desert shrub species with high drought and salt tolerance. Therefore, deeply exploring the effects of rhizobium strains from the rhizosphere of H. ammodendron on the growth and salt tolerance of Medicago sativa(alfalfa) would provide theoretical basis and excellent rhizobium resources for developing new compound microbial fertilizers and improving the salt tolerance of alfalfa.【Method】The effects of three rhizobium strains (WAW-10, WA30-5 and WM30-21) isolated from the rhizosphere of H. ammodendron on the growth promotion and salt tolerance of alfalfa were investigated. Sinorhizobium meliloti Sm1021 was used as the reference strain.【Result】Under normal conditions or salt stress (300 mmol/L NaCl), WAW-10, WA30-5 and WM30-21 significantly increased plant height, root length, biomass, leaf chlorophyll content, root activity, and the carbon and nitrogen contents of alfalfa; three strains all induced the nodulation of alfalfa. Under 300 mmol/L NaCl, WAW-10, WA30-5 and WM30-21 significantly improved catalase activity and reduced relative membrane permeability and malondialdehyde content, therefore increased relative membrane integrity; WAW-10, WA30-5 and WM30-21 significantly increased leaf-soluble sugar and proline contents with increased osmotic regulation ability; WAW-10, WA30-5 and WM30-21 significantly decreased Na+ content in the shoots and roots of alfalfa and maintained the relative stability of the K+ content, resulting in an increased tissue K+/Na+ molar ratio (P < 0.05).【Conclusion】The inoculation of three rhizobium strains isolated from the rhizosphere of H. ammodendron all promoted the growth of alfalfa and improved its salt tolerance through maintaining relative membrane integrity, improving osmotic regulation ability and increasing tissue K+/Na+ molar ratio; WM30-21 had the optimal effects.

Key words

Haloxylon ammodendron / rhizosphere / rhizobium / Medicago sativa / growth promotion / salt tolerance

Cite this article

Download Citations
CHEN Jia , GOU Jingyi , ZHAO Qi , et al . Induced growth and salt tolerance of alfalfa by rhizobium strains from the rhizosphere of Haloxylon ammodendron[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2021, 45(6): 99-110 https://doi.org/10.12302/j.issn.1000-2006.202012040

References

[1]
FLOWERS T J, YEO A R. Breeding for salinity resistance in crop plants: where next?[J]. Funct Plant Biol, 1995, 22(6):875. DOI: 10.1071/pp9950875.
[2]
姚丹, 牛舒琪, 赵祺, 等. 梭梭根际枯草芽孢杆菌WM13-24 对多年生黑麦草耐盐性的影响[J]. 生态学报, 2020, 40(20):7419-7429.
YAO D, NIU S Q, ZHAO Q, et al. Induced salt tolerance of ryegrass by Bacillus subtilis strain WM13-24 from the rhizosphere of Haloxylon ammodendron[J]. Acta Ecol Sin, 2020, 40(20):7419-7429.
[3]
马剑敏, 李今, 张改娜, 等. Hg2+与POD复合处理对小麦萌发及幼苗生长的影响[J]. 植物学通报, 2004, 21(5):531-538.
MA J M, LI J, ZHANG G N, et al. Effects of POD and Hg2+ on seed germination and seedling growth of wheat[J]. Chin Bull Bot, 2004, 21(5):531-538. DOI: 10.3969/j.issn.1674-3466.2004.05.003.
[4]
王慧英, 孙建设, 张建光. NaCl胁迫对苹果砧木K+和Na+吸收的影响及其与耐盐性的关系[J]. 河北农业大学学报, 2002, 25(S1):104-107.
WANG H Y, SUN J S, ZHANG J G. Studies on absorption of sodium and potassium ions by apple rootstocks under sodium chloride stress and its relation to salt tolerance[J]. J Agric Univ Hebei, 2002, 25(S1):104-107. DOI: 10.3969/j.issn.1000-1573.2002.z1.032.
[5]
韩亚琦, 唐宇丹, 张少英, 等. 盐胁迫抑制槲栎2变种光合作用的机理研究[J]. 西北植物学报, 2007, 27(3):583-587.
HAN Y Q, TANG Y D, ZHANG S Y, et al. Photosynjournal inhibition of two varieties of Quercus aliena in salt stress[J]. Acta Bot Boreali-Occidentalia Sin, 2007, 27(3):583-587. DOI: 10.3321/j.issn:1000-4025.2007.03.028.
[6]
王东明, 贾媛, 崔继哲. 盐胁迫对植物的影响及植物盐适应性研究进展[J]. 中国农学通报, 2009, 25(4):124-128.
WANG D M, JIA Y, CUI J Z. Advances in research on effects of salt stress on plant and adaptive mechanism of the plant to salinity[J]. Chin Agric Sci Bull, 2009, 25(4):124-128.
[7]
XU G, FAN X, MILLER A J. Plant nitrogen assimilation and use efficiency[J]. Annu Rev Plant Biol, 2012, 63:153-182. DOI: 10.1146/annurev-arplant-042811-105532.
[8]
ZILLI J É, ALVES B J R, ROUWS L F M, et al. The importance of denitrification performed by nitrogen-fixing bacteria used as inoculants in south America[J]. Plant Soil, 2020, 451(1/2):5-24. DOI: 10.1007/s11104-019-04187-7.
[9]
CARPENTER S R, CARACO N F, CORRELL D L, et al. Nonpoint pollution of surface waters with phosphorus and nitrogen[J]. Ecol Appl, 1998, 8(3):559-568. DOI: 10.1890/1051-0761(1998)008[0559:NPOSWW]2.0.CO;2.
[10]
HELLRIEGEL H, WILFARTH H. Erfolgt die assimilation des freien stickstoffs durch die leguminosen unter mitwirkung niederer organismen?[J]. Berichte Der Deutschen Bot Gesellschaft, 1889, 7(3):138-143. DOI: 10.1111/j.1438-8677.1889.tb05680.x.
[11]
ANDREWS M, RAVEN J A, LEA P J. Do plants need nitrate?The mechanisms by which nitrogen form affects plants[J]. Ann Appl Biol, 2013, 163(2):174-199. DOI: 10.1111/aab.12045.
[12]
RAVEN J A, ANDREWS M. Evolution of tree nutrition[J]. Tree Physiol, 2010, 30(9):1050-1071. DOI: 10.1093/treephys/tpq056.
[13]
GRAY E J, SMITH D L. Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes[J]. Soil Biol Biochem, 2005, 37(3):395-412. DOI: 10.1016/j.soilbio.2004.08.030.
[14]
王卫栋, 杨培志, 张攀, 等. 共生根瘤菌对NaCl胁迫下紫花苜蓿抗氧化和渗透调节能力的影响[J]. 草业学报, 2013, 22(5):120-127.
WANG W D, YANG P Z, ZHANG P, et al. The effect of symbiotic Rhizobium on the antioxidative and osmoregulatory capability in alfalfa under salt stress[J]. Acta Prataculturae Sin, 2013, 22(5):120-127. DOI: 10.11686/cyxb20130514.
[15]
SHRIVASTAVA P, KUMAR R. Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation[J]. Saudi J Biol Sci, 2015, 22(2):123-131. DOI: 10.1016/j.sjbs.2014.12.001.
[16]
张靖. 钙、钾提高根瘤共生苜蓿抗旱性的作用研究[D]. 杨凌: 西北农林科技大学, 2019.
ZHANG J. Effect of calcium and potassium on rhizobium symbiosis contribution to drought resistance in alfalfa (Medicago sativa L.)[D]. Yangling: Northwest A & F University, 2019.
[17]
BAO A K, WANG S M, WU G Q, et al. Overexpression of the Arabidopsis H+-PPase enhanced resistance to salt and drought stress in transgenic alfalfa (Medicago sativa L.)[J]. Plant Sci, 2009, 176(2):232-240. DOI: 10.1016/j.plantsci.2008.10.009.
[18]
包爱科, 杜宝强, 王锁民. 紫花苜蓿耐盐、抗旱生理机制研究进展[J]. 草业科学, 2011, 28(9):1700-1705.
BAO A K, DU B Q, WANG S M. Advances on physiological mechanisms of alfalfa resistant to salt and drought[J]. Pratacultural Sci, 2011, 28(9):1700-1705.
[19]
张立全, 张凤英, 哈斯阿古拉. 紫花苜蓿耐盐性研究进展[J]. 草业学报, 2012, 21(6):296-305.
ZHANG L Q, ZHANG F Y, HASI A. Research progress on alfalfa salt tolerance[J]. Acta Prataculturae Sin, 2012, 21(6):296-305.
[20]
刘倩, 高娅妮, 柳旭, 等. 混合盐碱胁迫下接种丛枝菌根真菌和根瘤菌对紫花苜蓿生长的影响[J]. 生态学报, 2018, 38(17):6143-6155.
LIU Q, GAO Y N, LIU X, et al. Effects of inoculation with arbuscular mycorrhizal fungi and rhizobia on growth of Medicago sativa under saline-alkaline stress[J]. Acta Ecol Sin, 2018, 38(17):6143-6155. DOI: 10.5846/stxb201708211500.
[21]
WANG Y F, ZHANG Z Q, ZHANG P, et al. Rhizobium symbiosis contribution to short-term salt stress tolerance in alfalfa (Medicago sativa L.)[J]. Plant Soil, 2016, 402(1/2):247-261. DOI: 10.1007/s11104-016-2792-6.
[22]
HE C, GAO H, WANG H, et al. GSK3-mediated stress signaling inhibits legume-Rhizobium symbiosis by phosphorylating GmNSP1 in soybean[J]. Mol Plant, 2021, 14(3):488-502. DOI: 10.1016/j.molp.2020.12.015.
[23]
ZOU T, LI Y, XU H, et al. Responses to precipitation treatment for Haloxylon ammodendron growing on contrasting textured soils[J]. Ecol Res, 2010, 25(1):185-194. DOI: 10.1007/s11284-009-0642-1.
[24]
沈亮, 徐荣, 刘赛, 等. 肉苁蓉寄主梭梭根际土壤微生物种类及群落结构特征[J]. 生态学报, 2016, 36(13):3933-3942.
SHEN L, XU R, LIU S, et al. Characteristics of microbial community structure in rhizosphere soil of Haloxylon ammodendron[J]. Acta Ecol Sin, 2016, 36(13):3933-3942.
[25]
何权, 蒋瑞娟, 朱军, 等. 新疆梭梭种子表型性状变异分析及相关研究[J]. 植物资源与环境学报, 2019, 28(3):26-32.
HE Q, JIANG R J, ZHU J, et al. Variation analysis on seed phenotypic traits of Haloxylon ammodendron in Xinjiang and related research [J]. J Plant Resour Environ, 2019, 28(3):26-32.DOI: 10.3969/j.issn.1674-7895.2019.03.04.
[26]
岳利军, 马清, 周向睿, 等. 钠复合肥促进荒漠植物梭梭、白刺和红砂生长并增强其抗旱性[J]. 兰州大学学报(自然科学版), 2013, 49(5):666-674.
YUE L J, MA Q, ZHOU X R, et al. Sodium compound fertilizer in improving the growth and drought resistance of desert plants Halaxylon ammodendron, Nitraria tangutorum and Reaumuria soongorica[J]. J Lanzhou Univ (Nat Sci), 2013, 49(5):666-674. DOI: 10.3969/j.issn.0455-2059.2013.05.013.
[27]
李惠茹. 旱生植物梭梭根际可培养细菌多样性分析[D]. 兰州: 兰州大学, 2016.
LI H R. Diversity analysis of culturable bacteria from xerophyte Haloxylon ammodendron rhizosphere[D]. Lanzhou: Lanzhou University, 2016.
[28]
XI J J, CHEN Y H, NAKASHIMA J, et al. Medicago truncatula esn1 defines a genetic locus involved in nodule senescence and symbiotic nitrogen fixation[J]. Mol Plant-Microbe Interactions, 2013, 26(8):893-902. DOI: 10.1094/MPMI-02-13-0043-R.
[29]
BROUGHTON W J, DILWORTH M J. Control of leghaemoglobin synjournal in snake beans[J]. Biochem J, 1971, 125(4):1075-1080. DOI: 10.1042/bj1251075.
[30]
陈雅君, 闫庆伟, 张璐, 等. 氮素与植物生长相关研究进展[J]. 东北农业大学学报, 2013, 44(4):144-148.
CHEN Y J, YAN Q W, ZHANG L, et al. Research progress on nitrogen and plant growth[J]. J Northeast Agric Univ, 2013, 44(4):144-148. DOI: 10.19720/j.cnki.issn.1005-9369.2013.04.026.
[31]
BASHAN Y, LEVANONY H, MITIKU G. Changes in proton efflux of intact wheat roots induced by Azospirillum brasilense Cd[J]. Can J Microbiol, 1989, 35(7):691-697. DOI: 10.1139/m89-113.
[32]
肖佳雷, 赵明, 王贵江, 等. 微肥与化学调控剂处理对春大豆农艺性状及产量性能的影响[J]. 作物杂志, 2013 (4):83-86.
XIAO J L, ZHAO M, WANG G J, et al. Effect of micronutrient fertilizer and chemical regulators on agronomic traits and yield performance in spring soybean[J]. Crops, 2013(4):83-86. DOI: 10.16035/j.issn.1001-7283.2013.04.025.
[33]
缑晶毅, 索升州, 姚丹, 等. 微生物肥料研究进展及其在农业生产中的应用[J]. 安徽农业科学, 2019, 47(11):13-17.
GOU J Y, SUO S Z, YAO D, et al. Research progress of microbial fertilizers and their application in agricultural production[J]. J Anhui Agric Sci, 2019, 47(11):13-17.
[34]
张蕊. 根瘤促生剂对大豆结瘤和固氮影响的研究[D]. 太原: 山西大学, 2011.
ZHANG R. Effect of nodule growth-promoting agent on nodule growth and nitrogen fixation in soybean[D]. Taiyuan: Shanxi University, 2011.
[35]
EGAMBERDIEVA D, LI L, LINDSTRÖM K, et al. A synergistic interaction between salt-tolerant Pseudomonas and Mesorhizobium strains improves growth and symbiotic performance of liquorice (Glycyrrhiza uralensis Fish.) under salt stress[J]. Appl Microbiol Biotechnol, 2016, 100(6):2829-2841. DOI: 10.1007/s00253-015-7147-3.
[36]
GROVER M, ALI S Z, SANDHYA V, et al. Role of microorganisms in adaptation of agriculture crops to abiotic stresses[J]. World J Microbiol Biotechnol, 2011, 27(5):1231-1240. DOI: 10.1007/s11274-010-0572-7.
[37]
章孜亮, 高俊, 李丽艳, 等. 减氮条件下接种根瘤菌对花生生长、氮肥效率及经济效益的影响[J]. 花生学报, 2020, 49(2):54-58, 72.
ZHANG Z L, GAO J, LI L Y, et al. Effects of rhizobial inoculation on peanut growth, nitrogen utilization efficiency and economic benefit under nitrogen-reducing conditions[J]. J Peanut Sci, 2020, 49(2):54-58, 72. DOI: 10.14001/j.issn.1002-4093.2020.02.009.
[38]
韩可, 孙彦, 张昆, 等. 接种不同根瘤菌对紫花苜蓿生产力的影响[J]. 草地学报, 2018, 26(3):639-644.
HAN K, SUN Y, ZHANG K, et al. Effect of different Rhizobium on productivity of Medicago sativa L[J]. Acta Agrestia Sin, 2018, 26(3):639-644. DOI: 10.11733/j.issn.1007-0435.2018.03.016.
[39]
HAROUN S A, HUSSEIN M H. The promotive effect of algal biofertilizers on growth, protein pattern and some metabolic activities of Lupinus termis plants grown in siliceous soil[J]. Asian J Plant Sci, 2003, 2(13):944-951. DOI: 10.3923/ajps.2003.944.951.
[40]
BISWAS J C, LADHA J K, DAZZO F B, et al. Rhizobial inoculation influences seedling vigor and yield of rice[J]. Agron J, 2000, 92(5):880-886. DOI: 10.2134/agronj2000.925880x.
[41]
EGAMBERDIEVA D, KUCHAROVA Z. Selection for root colonising bacteria stimulating wheat growth in saline soils[J]. Biol Fertil Soils, 2009, 45(6):563-571. DOI: 10.1007/s00374-009-0366-y.
[42]
LUTTS S, KINET J M, BOUHARMONT J. Effects of salt stress on growth, mineral nutrition and proline accumulation in relation to osmotic adjustment in rice (Oryza sativa L.) cultivars differing in salinity resistance[J]. Plant Growth Regul, 1996, 19(3):207-218. DOI: 10.1007/BF00037793.
[43]
ZHAO C Z, ZHANG H, SONG C P, et al. Mechanisms of plant responses and adaptation to soil salinity[J]. Innov, 2020, 1(1):100017. DOI: 10.1016/j.xinn.2020.100017.
[44]
WANG C J, YANG W, WANG C, et al. Induction of drought tolerance in cucumber plants by a consortium of three plant growth-promoting rhizobacterium strains[J]. PLoS One, 2012, 7(12):e52565. DOI: 10.1371/journal.pone.0052565.
[45]
WU Q S, ZOU Y N, LIU W, et al. Alleviation of salt stress in Citrus seedlings inoculated with mycorrhiza: changes in leaf antioxidant defense systems[J]. Plant Soil Environ, 2010, 56(10):470-475. DOI: 10.17221/54/2010-pse.
[46]
HAN Q Q, LÜ X P, BAI J P, et al. Beneficial soil bacterium Bacillus subtilis (GB03) augments salt tolerance of white clover[J]. Front Plant Sci, 2014, 5:525. DOI: 10.3389/fpls.2014.00525.
[47]
ABD ALLAH E F, HASHEM A, ALQARAWI A A, et al. Enhancing growth performance and systemic acquired resistance of medicinal plant Sesbania sesban (L.) Merr using arbuscular mycorrhizal fungi under salt stress[J]. Saudi J Biol Sci, 2015, 22(3):274-283. DOI: 10.1016/j.sjbs.2015.03.004.
[48]
RUIZ-LOZANO J M. Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress: new perspectives for molecular studies[J]. Mycorrhiza, 2003, 13(6):309-317. DOI: 10.1007/s00572-003-0237-6.
[49]
谢晓红. 丛枝菌根真菌对弱光及盐胁迫下甜瓜生长和光合作用的影响[D]. 雅安: 四川农业大学, 2016.
XIE X H. Effects of arbuscular mycorrhizal fungi on growth and photosynthesis in Melon seedlings under weak light with salt stress[D]. Ya’an: Sichuan Agricultural University, 2016.
[50]
杨少辉, 季静, 王罡. 盐胁迫对植物的影响及植物的抗盐机理[J]. 世界科技研究与发展, 2006, 28(4):70-76.
YANG S H, JI J, WANG G. Effects of salt stress on plants and the mechanism of salt tolerance[J]. World Sci Tech R D, 2006, 28(4):70-76. DOI: 10.16507/j.issn.1006-6055.2006.04.012.
[51]
SASSI-AYDI S, AYDI S, ABDELLY C. Inoculation with the native Rhizobium gallicum 8a3 improves osmotic stress tolerance in common bean drought-sensitive cultivar[J]. Acta Agric Scand Sect B: Soil Plant Sci, 2012, 62(2):179-187. DOI: 10.1080/09064710.2011.597425.
[52]
EVELIN H, KAPOOR R, GIRI B. Arbuscular mycorrhizal fungi in alleviation of salt stress: a review[J]. Ann Bot, 2009, 104(7):1263-1280. DOI: 10.1093/aob/mcp251.
[53]
SZABADOS L, SAVOURÉ A. Proline: a multifunctional amino acid[J]. Trends Plant Sci, 2010, 15(2):89-97. DOI: 10.1016/j.tplants.2009.11.009.
[54]
PALMA F, TEJERA N A, LLUCH C. Nodule carbohydrate metabolism and polyols involvement in the response of Medicago sativa to salt stress[J]. Environ Exp Bot, 2013, 85:43-49. DOI: 10.1016/j.envexpbot.2012.08.009.
[55]
缑晶毅. 梭梭根际促生菌特性分析及其对三种豆科牧草生长的生理调控作用[D]. 兰州: 兰州大学, 2019.
GOU J Y. Characteriztion of plant growth-promoting rhizobacteria from Haloxylon ammodendron and their physiological regulation on the growth of three leguminous forage species[D]. Lanzhou: Lanzhou University, 2019.
[56]
NIU S Q, LI H R, PARÉ P W, et al. Induced growth promotion and higher salt tolerance in the halophyte grass Puccinellia tenuiflora by beneficial rhizobacteria[J]. Plant Soil, 2016, 407(1/2):217-230. DOI: 10.1007/s11104-015-2767-z.
[57]
HAN Q Q, WU Y N, GAO H J, et al. Improved salt tolerance of medicinal plant Codonopsis pilosula by Bacillus amyloliquefaciens GB03[J]. Acta Physiol Plant, 2016, 39(1):1-7. DOI: 10.1007/s11738-016-2325-1.
[58]
ZHANG J L, AZIZ M, QIAO Y, et al. Soil microbe Bacillus subtilis (GB03) induces biomass accumulation and salt tolerance with lower sodium accumulation in wheat[J]. Crop Pasture Sci, 2014, 65(5):423. DOI: 10.1071/cp13456.

RIGHTS & PERMISSIONS

Copyright reserved © 2021.
PDF(4052 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/