JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (4): 127-134.doi: 10.12302/j.issn.1000-2006.202101018
Previous Articles Next Articles
XIA Jie1,2(), CHEN Sheng1, WU Yifan1, ZHANG Wei1, XIE Jinzhong1,*()
Received:
2021-01-13
Revised:
2021-06-15
Online:
2022-07-30
Published:
2022-08-01
Contact:
XIE Jinzhong
E-mail:18404969158@163.com;jzhxie@163.net
CLC Number:
XIA Jie, CHEN Sheng, WU Yifan, ZHANG Wei, XIE Jinzhong. Dynamic changes of soil microbial biomass and microbial entropy after planting Dictyophora indusiata in Phyllostachys edulis forests[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(4): 127-134.
Table 1
Variation characteristics of soil microbial entropy and soil-microbial stoichiometry imbalance in different treatments"
处理treatment | qMBC | qMBN | qMBP | Cimb/Nimb | Cimb/Pimb | Nimb/Pimb |
---|---|---|---|---|---|---|
CK | 2.80±0.13 c | 17.04±0.60 c | 6.38±0.16 d | 6.09±0.21 b | 2.28±0.06 c | 0.37±0.01 b |
T0 | 5.57±0.19 a | 33.10±1.37 a | 10.05±0.78 c | 5.94±0.05 b | 1.80±0.10 d | 0.30±0.02 c |
T1 | 4.81±0.26 b | 16.01±0.43 c | 14.12±1.09 a | 3.34±0.27 c | 2.95±0.38 b | 0.88±0.04 a |
T2 | 2.96±0.09 c | 27.71±0.71 b | 11.44±0.54 b | 9.37±0.52 a | 3.87±0.29 a | 0.41±0.01 b |
Table 2
Correlation coefficients of soil and soil microbial biomass, microbial entropy and soil-microbial stoichiometric imbalance"
参数 parameter | SOC | TN | TP | MBC | MBN | MBP | qMBC | qMBN | qMBP | Cimb/Nimb | Cimb/Pimb |
---|---|---|---|---|---|---|---|---|---|---|---|
TN | 0.208 | ||||||||||
TP | -0.769** | -0.415 | |||||||||
MBC | 0.203 | 0.480 | -0.751** | ||||||||
MBN | 0.792** | -0.001 | -0.890** | 0.646* | |||||||
MBP | 0.077 | 0.946** | -0.202 | 0.230 | -0.214 | ||||||
qMBC | 0.050 | 0.487 | -0.644* | 0.987** | 0.419 | 0.257 | |||||
qMBN | 0.752** | -0.134 | -0.828** | 0.487 | 0.991** | -0.340 | 0.361 | ||||
qMBP | 0.339 | 0.961** | -0.530 | 0.458 | 0.134 | 0.937** | 0.443 | 0.003 | |||
Cimb/Nimb | 0.697* | -0.416 | -0.195 | -0.450 | -0.493 | -0.393 | -0.579* | 0.534 | -0.262 | ||
Cimb/Pimb | 0.486 | 0.389 | -0.054 | -0.460 | -0.047 | 0.544 | -0.523 | -0.111 | 0.499 | 0.499 | |
Nimb/Pimb | -0.298 | 0.825** | 0.121 | 0.132 | -0.543 | 0.917** | 0.214 | -0.647* | 0.747** | -0.656* | 0.324 |
Table 3
Characteristic polynomial, characteristic vectors and contribution rates of different treatment soils and soil microbial indicators"
参数 parameter | PC1 | PC2 | PC3 |
---|---|---|---|
SOC | 0.150 | -0.029 | -0.217 |
TN | 0.137 | -0.149 | 0.109 |
TP | -0.173 | -0.070 | 0.024 |
MBC | 0.133 | 0.127 | 0.178 |
MBN | 0.152 | 0.122 | -0.098 |
MBP | 0.098 | -0.206 | 0.086 |
qMBC | 0.118 | 0.130 | 0.222 |
qMBN | 0.138 | 0.147 | -0.111 |
qMBP | 0.148 | -0.141 | 0.057 |
Cimb/Nimb | -0.033 | 0.387 | 0.039 |
Cimb/Pimb | -0.044 | 0.213 | 0.193 |
Nimb/Pimb | -0.031 | 0.217 | -0.195 |
特征根 characteristic polynomial | 5.552 | 3.940 | 2.508 |
贡献率/% contribution rate | 46.268 | 32.835 | 20.897 |
累计贡献率/% cumulative contribution rate | 46.268 | 79.103 | 100.000 |
Table 4
Principal component scores and comprehensive scores of soils and soil microorganisms under different treatments"
处理 treatment | PC1 | 排名 rank | PC2 | 排名 rank | PC3 | 排名 rank | PC | 综合 排名 rank |
---|---|---|---|---|---|---|---|---|
T0 | 0.70 | 1 | 1.28 | 1 | 0.35 | 2 | 0.82 | 1 |
T1 | 0.36 | 3 | -1.06 | 4 | 1.00 | 1 | 0.03 | 2 |
T2 | 0.42 | 2 | -0.44 | 3 | -1.37 | 4 | -0.24 | 3 |
CK | -1.48 | 4 | 0.22 | 2 | 0.03 | 3 | -0.61 | 4 |
[1] | PASCUAL J A, GARCIA C, HERNANDEZ T, et al. Soil microbial activity as a biomarker of degradation and remediation processes[J]. Soil Biol Biochem, 2000, 32(13):1877-1883. DOI:10.1016/S0038-0717(00)00161-9. |
[2] | CARAVACA F, ALGUACIL M M, FIGUEROA D, et al. Re-establishment of Retama sphaerocarpa as a target species for reclamation of soil physical and biological properties in a semiarid Mediterranean area[J]. For Ecol Manag, 2003, 182(1/2/3):49-58. DOI:10.1016/S0378-1127(03)00067-7. |
[3] | 吴秀芝, 刘秉儒, 阎欣, 等. 荒漠草地土壤微生物生物量和微生物熵对沙漠化的响应[J]. 应用生态学报, 2019, 30(8):2691-2698. |
WU X Z, LIU B R, YAN X, et al. Response of soil microbial biomass and microbial entropy to desertification in desert grassland[J]. Chin J Appl Ecol, 2019, 30(8):2691-2698.DOI:10.13287/j.1001-9332.201908.009. | |
[4] | ROGERS B F, TATE R L III. Temporal analysis of the soil microbial community along a toposequence in pineland soils[J]. Soil Biol Biochem, 2001, 33(10):1389-1401. DOI:10.1016/S0038-0717(01)00044-X. |
[5] | 魏媛, 张金池, 喻理飞. 退化喀斯特植被恢复过程中土壤微生物生物量碳的变化[J]. 南京林业大学学报(自然科学版), 2008, 32(5):71-75. |
WEI Y, ZHANG J C, YU L F. Changes of soil microbial biomass carbon along successional processes of degraded Karst vegetation[J]. J Nanjing For Univ (Nat Sci Ed), 2008, 32(5):71-75.DOI:10.3969/j.issn.1000-2006.2008.05.016. | |
[6] | SRIVASTAVA S C, SINGH J S. Microbial C,N and P in dry tropical forest soils:effects of alternate land-uses and nutrient flux[J]. Soil Biol Biochem, 1991, 23(2):117-124. DOI:10.1016/0038-0717(91)90122-Z. |
[7] | ANDERSON T H. Microbial eco-physiological indicators to asses soil quality[J]. Agric Ecosyst Environ, 2003, 98(1/2/3):285-293. DOI:0.1016/S0167-8809(03)00088-4. |
[8] | SPARLING G P. Ratio of microbial biomass carbon to soil organic carbon as a sensitive indicator of changes in soil organic matter[J]. Soil Res, 1992, 30(2):195.DOI:10.1071/sr9920195. |
[9] | 胡宗达, 刘世荣, 刘兴良, 等. 川西亚高山天然次生林不同演替阶段土壤-微生物生物量及其化学计量特征[J]. 生态学报, 2021, 41(12):4900-4912. |
HU Z D, LIU S R, LIU X L, et al. Soil and soil microbial biomass contents and C:N:P stoichiometry at different succession stages of natural secondary forest in subalpine area of western Sichuan,China[J]. Acta Ecol Sin, 2021, 41(12):4900-4912.DOI:10.5846/stxb202008202170. | |
[10] | 周正虎, 王传宽. 生态系统演替过程中土壤与微生物碳氮磷化学计量关系的变化[J]. 植物生态学报, 2016, 40(12):1257-1266. |
ZHOU Z H, WANG C K. Changes of the relationships between soil and microbes in carbon,nitrogen and phosphorus stoichiometry during ecosystem succession[J]. Chin J Plant Ecol, 2016, 40(12):1257-1266.DOI:10.17521/cjpe.2016.0218. | |
[11] | MOOSHAMMER M, WANEK W, ZECHMEISTER-BOLTENSTERN S, et al. Stoichiometric imbalances between terrestrial decomposer communities and their resources:mechanisms and implications of microbial adaptations to their resources[J]. Front Microbiol, 2014, 5:22.DOI:10.3389/fmicb.2014.00022. |
[12] | MÜLLER M, OELMANN Y, SCHICKHOFF U, et al. Himalayan treeline soil and foliar C:N:P stoichiometry indicate nutrient shortage with elevation[J]. Geoderma, 2017, 291:21-32.DOI:10.1016/j.geoderma.2016.12.015. |
[13] | 冯杰, 冯娜, 刘艳芳, 等. 面向规模化应用的竹荪多糖液态深层发酵工艺优化[J]. 食品科学, 2020, 41(2):181-187. |
FENG J, FENG N, LIU Y F, et al. Optimization of medium components for large-scale production of intracellular polysaccharides from Dictyophora indusiata in submerged fermentation[J]. Food Sci, 2020, 41(2):181-187.DOI:10.7506/spkx1002-6630-20181101-014. | |
[14] | 彭超, 艾文胜, 谢韵帆, 等. 竹基质与菌种密度对棘托竹荪产量及营养品质的影响[J]. 热带作物学报, 2020, 41(6):1100-1107. |
PENG C, AI W S, XIE Y F, et al. Effect of bamboo sawdust substrate and strain planting density to yield and nutritional quality of Dictyophora echinovolvata[J]. Chin J Trop Crops, 2020, 41(6):1100-1107.DOI:10.3969/j.issn.1000-2561.2020.06.005. | |
[15] | 苏德伟, 林辉, 林春梅, 等. 不同生长时期竹荪覆土层土壤微生物、理化性质及其酶活性的变化研究[J]. 西南农业学报, 2014, 27(3):1170-1174. |
SU D W, LIN H, LIN C M, et al. Study on changes of microorganisms,physicochemical property and enzyme activities about soil over Dictyophora indusiata at different growth stages[J]. Southwest China J Agric Sci, 2014, 27(3):1170-1174.DOI:10.16213/j.cnki.scjas.2014.03.066. | |
[16] | 卢鹏, 谢锦忠, 童龙, 等. 麻竹林下竹荪仿野生种植关键技术研究[J]. 南京林业大学学报(自然科学版), 2016, 40(4):177-182. |
LU P, XIE J Z, TONG L, et al. Study on the wild imitation cultivation technique for Dictyophora indusiata in Dendrocalamus latiflorus stands[J]. J Nanjing For Univ (Nat Sci Ed), 2016, 40(4):177-182.DOI:10.3969/j.issn.1000-2006.2016.04.028. | |
[17] | 白会超. 不同竹基料配方对竹荪产量和品质影响的研究[D]. 雅安: 四川农业大学, 2015. |
BAI H C. The study of effects of different bamboo base formula on the yield and quality of Dictyophora[D]. Ya’an: Sichuan Agricultural University, 2015. | |
[18] | 常颖萃, 蒋文静, 石妍, 等. 竹荪不同生育期土壤微生物动态变化[J]. 热带作物学报, 2013, 34(7):1228-1231. |
CHANG Y C, JIANG W J, SHI Y, et al. Dynamic change of soil microorganisms at various growing stage of Dictyophora[J]. Chin J Trop Crops, 2013, 34(7):1228-1231. | |
[19] | 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000. |
BAO S D. Soil and agricultural chemistry analysis[M]. Beijing: Chinese Agriculture Press, 2000. | |
[20] | 张利青, 彭晚霞, 宋同清, 等. 云贵高原喀斯特坡耕地土壤微生物量C、N、P空间分布[J]. 生态学报, 2012(7):2056-2065. |
ZHANG L Q, PENG W X, SONG T Q, et al. Spatial heterogeneity of soil microbial biomass carbon,nitrogen,and phosphorus in sloping farmland in a Karst region on the Yunnan-Guizhou Plateau[J]. Acta Ecol Sin, 2012(7):2056-2065.DOI: 10.5846/stxb201108171204. | |
[21] | SHAO Y H, XIE Y X, WANG C Y, et al. Effects of different soil conservation tillage approaches on soil nutrients,water use and wheat-maize yield in rainfed dry-land regions of north China[J]. Eur J Agron, 2016, 81:37-45.DOI:10.1016/j.eja.2016.08.014. |
[22] | 赵睿宇, 李正才, 王斌, 等. 毛竹林地表稻草覆盖后翻耕对土壤有机碳的影响[J]. 生态学杂志, 2017, 36(8):2118-2126. |
ZHAO R Y, LI Z C, WANG B, et al. Effects of straw mulching and scarification on soil labile organic carbon pool in a Phyllostachys edulis plantation[J]. Chin J Ecol, 2017, 36(8):2118-2126.DOI:10.13292/j.1000-4890.201708.016. | |
[23] | 徐阳春, 沈其荣, 冉炜. 长期免耕与施用有机肥对土壤微生物生物量碳、氮、磷的影响[J]. 土壤学报, 2002, 39(1):83-90. |
XU Y C, SHEN Q R, RAN W. Effects of zero-tillage and application of manure on soil microbial biomass C,N and P after sixteen years of cropping[J]. Acta Pedol Sin, 2002, 39(1):83-90.DOI:10.11766/trxb200103110113. | |
[24] | SPEDDING T A, HAMEL C, MEHUYS G R, et al. Soil microbial dynamics in maize-growing soil under different tillage and residue management systems[J]. Soil Biol Biochem, 2004, 36(3):499-512.DOI:10.1016/j.soilbio.2003.10.026. |
[25] | 汤宏, 沈健林, 张杨珠, 等. 秸秆还田与水分管理对稻田土壤微生物量碳、氮及溶解性有机碳、氮的影响[J]. 水土保持学报, 2013, 27(1):240-246. |
TANG H, SHEN J L, ZHANG Y Z, et al. Effect of rice straw incorporation and water management on soil microbial biomass carbon,nitrogen and dissolved organic carbon,nitrogen in a rice paddy field[J]. J Soil Water Conserv, 2013, 27(1):240-246.DOI:10.13870/j.cnki.stbcxb.2013.01.045. | |
[26] | 徐华勤, 肖润林, 宋同清, 等. 稻草覆盖与间作三叶草对丘陵茶园土壤微生物群落功能的影响[J]. 生物多样性, 2008, 16(2):166-174. |
XU H Q, XIAO R L, SONG T Q, et al. Effects of mulching and intercropping on the functional diversity of soil microbial communities in tea plantations[J]. Biodivers Sci, 2008, 16(2):166-174.DOI:10.3321/j.issn:1005-0094.2008.02.009. | |
[27] | 张奇, 陈粲, 陈效民, 等. 不同深度秸秆还田对黄棕壤氮素和微生物生物量碳氮的影响[J]. 水土保持通报, 2019, 39(2):56-61. |
ZHANG Q, CHEN C, CHEN X M, et al. Effects of straw returning to different soil depths on soil nitrogen and microbial biomass carbon and nitrogen in yellow brown soil[J]. Bull Soil Water Conserv, 2019, 39(2):56-61.DOI: 10.13961/j.cnki.stbctb.2019.02.009 | |
[28] | SCHNÜRER J, ROSSWALL T. Mineralization of nitrogen from 15N labelled fungi,soil microbial biomass and roots and its uptake by barley plants[J]. Plant Soil, 1987, 102(1):71-78.DOI:10.1007/BF02370903. |
[29] | 崔纪超, 毛艳玲, 杨智杰, 等. 土壤微生物生物量磷研究进展[J]. 亚热带资源与环境学报, 2008, 3(4):80-89. |
CUI J C, MAO Y L, YANG Z J, et al. Advances in soil microbial biomass phosphorus[J]. J Subtrop Resour Environ, 2008, 3(4):80-89.DOI:10.19687/j.cnki.1673-7105.2008.04.011. | |
[30] | 任天志. 持续农业中的土壤生物指标研究[J]. 中国农业科学, 2000, 33(1):68-75. |
REN T Z. Soil bioindicators in sustainable agriculture[J]. Sci Agric Sin, 2000, 33(1):68-75. | |
[31] | 唐海明, 李超, 肖小平, 等. 有机肥氮投入比例对双季稻田根际土壤微生物生物量碳、氮和微生物熵的影响[J]. 应用生态学报, 2019, 30(4):1335-1343. |
TANG H M, LI C, XIAO X P, et al. Effects of different manure nitrogen input ratio on rhizosphere soil microbial biomass carbon,nitrogen and microbial quotient in double-cropping rice field[J]. Chin J Appl Ecol, 2019, 30(4):1335-1343.DOI:10.13287/j.1001-9332.201904.014. | |
[32] | SINGH J S, RAGHUBANSHI A S, SINGH R S, et al. Microbial biomass acts as a source of plant nutrients in dry tropical forest and savanna[J]. Nature, 1989, 338: 499-500. DOI:10.1038/338499a0. |
[33] | 陈安娜, 王光军, 陈婵, 等. 亚热带不同林龄杉木林叶-根-土氮磷化学计量特征[J]. 生态学报, 2018, 38(11):4027-4036. |
CHEN A N, WANG G J, CHEN C, et al. Variation in the N and P stoichiometry of leaf-root-soil during stand development in a Cunninghamia lanceolata plantation in subtropical China[J]. Acta Ecol Sin, 2018, 38(11):4027-4036.DOI: 10.5846/stxb201707141278. |
[1] | TONG Long, LI Hongyan, LIU Xiaoming, LI Bin, CHEN Lijie, CHEN Guilan, ZENG Xiaoying, GENG Yanghui. Effects of different cultivated formulas on the agronomic characteristics and nutritional value of Dictyophora indusiata [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(3): 30-36. |
[2] | LU Peng, XIE Jinzhong, TONG Long, WANG Ling, CHEN Lijie, ZHANG Wei, GENG Yanghui, LYU Yukui. Study on the wild imitation cultivation technique for Dictyophora indusiata in Dendrocalamus latiflorus stands [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2016, 40(04): 177-182. |
[3] | XU Hanmei, RUAN Honghua. Effect of the snow storm on the leaf litter decomposition and its nutrients releasing of Phyllostachys edulis ecosystem in the Wuyi Mountains [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2013, 37(06): 69-72. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||