Simulation and analyses of ecological characteristics of Cerasus conradinae adaptability area

DONG Jingjing, CHEN Jie, YANG Hong, LI Meng, WANG Xianrong, YI Xiangui

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (3) : 213-221.

PDF(4522 KB)
PDF(4522 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (3) : 213-221. DOI: 10.12302/j.issn.1000-2006.202101024

Simulation and analyses of ecological characteristics of Cerasus conradinae adaptability area

Author information +
History +

Abstract

【Objective】Cerasus conradinae is a endemic plant resource in China, with high ornamental value and utilization prospects. The impacts of climate change on its geographical distribution in the present and future (2050s, 2070s) were analyzed to provide a theoretical basis for the protection and utilization of C. conradinae.【Method】Based on data from 201 geographical distribution points for C. conradinae combined with climate characteristics, the MaxEnt model and ArcGIS software were used to predict its potential adaptive area in China. The contribution rate, knife cutting test, response curve drawing, principal component analysis and correlation analysis were used to make qualitative and quantitative analyses of the leading environmental factors.【Result】 The MaxEnt model precision detection is very reliable, with a regularized training gain of 0.945, and a test gain of 0.949, The potential adaptive area of C. conradinae is mainly in southwest, central and east China. The two core adaptive areas are concentrated in Chongqing and the area from the Sichuan Basin to the west, Wuling Mountain to the east, the Dalou Mountains to the south and Daba Mountain to the north, as well as the eastern Yunnan-Guizhou Plateau, the Miao Mountain range and the western edge of the Xuefeng Mountain range long strip area. The main environmental factors affecting its distributions were the wettest quarterly precipitation (bio 16), annual precipitation (bio 12), seasonal variation in temperature (bio 4) and the annual temperature difference (bio 7). Under the change of the 2050s future climate (CCSM4) scenario, the total adaptive area decreased compared with the contemporary area, but increased in the 2070s, and the extremely adaptive area spreading to the high latitude in a northeasterly direction, while the highly adaptive area spread in the low latitude direction.【Conclusion】The MaxEnt model can accurately predict the potential adaptive area of C. conradinae. The normal distribution area of C. conradinae is continuous and widespread, and the core area of germplasm resources protection and use is southwest, central and east China. This paper has laid an important foundation for further research on germplasm protection, phylogeography and resource use of Cerasus conradinae.

Key words

Cerasus conradinae / MaxEnt / geographical distribution / dominant environmental factor

Cite this article

Download Citations
DONG Jingjing , CHEN Jie , YANG Hong , et al . Simulation and analyses of ecological characteristics of Cerasus conradinae adaptability area[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2022, 46(3): 213-221 https://doi.org/10.12302/j.issn.1000-2006.202101024

References

[1]
文志, 郑华, 欧阳志云. 生物多样性与生态系统服务关系研究进展[J]. 应用生态学报, 2020, 31(1):340-348.
WEN Z, ZHENG H, OUYANG Z Y. Research progress on the relationship between biodiversity and ecosystem services[J]. Chin J Appl Ecol, 2020, 31(1):340-348.DOI: 10.13287/j.1001-9332.202001.003.
[2]
郭佳, 张宝林, 高聚林, 等. 气候变化对中国农业气候资源及农业生产影响的研究进展[J]. 北方农业学报, 2019, 47(1):105-113.
GUO J, ZHANG B L, GAO J L, et al. Advances on the impacts of climate change on agro-climatic resources and agricultural production in China[J]. Inn Mong Agric Sci Technol, 2019, 47(1):105-113.DOI: 10.3969/j.issn.2096-1197.2019.01.18.
[3]
BEBBER D P, RAMOTOWSKI M A T, GURR S J. Crop pests and pathogens move polewards in a warming world[J]. Nat Clim Chang, 2013, 3(11):985-988. DOI: 10.1038/nclimate1990.
[4]
朱耿平, 刘国卿, 卜文俊, 等. 生态位模型的基本原理及其在生物多样性保护中的应用[J]. 生物多样性, 2013, 21(1):90-98.
Abstract
生态位模型是利用物种已知的分布数据和相关环境变量, 根据一定的算法来推算物种的生态需求, 然后将运算结果投射至不同的空间和时间中来预测物种的实际分布和潜在分布。近年来, 该类模型被越来越多地应用在入侵生物学、保护生物学、全球气候变化对物种分布影响以及传染病空间传播的研究中。然而, 由于生态位模型的理论基础未被深入理解, 导致得出入侵物种生态位迁移等不符合实际的结论。作者从生态位与物种分布的关系、生态位模型构建的基本原理以及生态位模型和生态位的关系等方面探讨了生态位模型的理论基础。非生物的气候因素、物种间的相互作用和物种的迁移能力是影响物种分布的3个主要因素, 它们在不同的空间尺度下作用于物种的分布。生态位模型是利用物种分布点所关联的环境变量来模拟物种的分布, 这些分布点本身关联着该物种和其他物种间的相互作用, 因此生态位模型所模拟的是现实生态位(realized niche)或潜在生态位(potential niche), 而不是基础生态位(fundamental niche)。Grinnell生态位和Elton生态位均在生态位模型中得到反映, 这取决于环境变量类型的选择、所采用环境变量的分辨率以及物种自身的迁移能力。生态位模型在生物多样性保护中的应用主要包括物种的生态需求分析、未知物种或种群的探索和发现、自然保护区的选择和设计、物种入侵风险评价、气候变化对物种分布的影响、近缘物种生态位保守性及基于生态位分化的物种界定等方面。
ZHU G P, LIU G Q, BU W J, et al. Ecological niche modeling and its applications in biodiversity conservation[J]. Biodivers Sci, 2013, 21(1):90-98.DOI: 10.3724/SP.J.1003.2013.09106.
[5]
许仲林, 彭焕华, 彭守璋. 物种分布模型的发展及评价方法[J]. 生态学报, 2015, 35(2):557-567.
XU Z L, PENG H H, PENG S Z. The development and evaluation of species distribution models[J]. Acta Ecol Sin, 2015, 35(2):557-567.DOI: 10.5846/stxb201304030600.
[6]
NAGAI S, MORIMPTE H, SAITOH T M. A simpler way to predict flowering and full bloom dates of cherry blossoms by self-organizing maps[J]. Ecol Informatics, 2019, 56:101040. DOI: 10.1016/j.ecoinf.2019.101040.
[7]
PHILLIPS S, DUDIK M, SCHAPIRE R. A maximum entropy approach to species distribution modeling, 2004[C]. ACM, 2004. DOI: 10.1145/1015330.1015412.
[8]
中国植物志编辑委员会. 中国植物志[M]. 北京: 科学出版社, 1986.
[9]
王贤荣, 黄国富. 中国樱花类植物资源及其开发利用[J]. 林业科技开发, 2001, 15(6):3-6.
WANG X R, HUANG G F. Resources and exploitation of Chinese cherries[J]. China For Sci Technol, 2001, 15(6):3-6.DOI: 10.3969/j.issn.1000-8101.2001.06.001.
[10]
禹霖, 李建挥, 柏文富, 等. 湖南大熊山野生樱花资源调查与利用评价[J]. 林业与环境科学, 2019, 35(6):38-43.
YU L, LI J H, BAI W F, et al. Investigation and utilization evaluation of wild Cerasus resources in daxiong mountain of Hunan Province[J]. Guangdong For Sci Technol, 2019, 35(6):38-43.DOI: 10.3969/j.issn.1006-4427.2019.06.007.
[11]
柏文富, 禹霖, 李建挥, 等. 大围山樱属植物资源调查[J]. 湖南林业科技, 2019, 46(6):85-90.
BAI W F, YU L, LI J H, et al. Investigation of Cerasus resources on Dawei Mountain[J]. Hunan For Sci Technol, 2019, 46(6):85-90.DOI: 10.3969/j.issn.1003-5710.2019.06.013.
[12]
付涛, 严春风, 林乐静, 等. 我国南方野生樱属植物的SSR亲缘关系分析[J]. 核农学报, 2018, 32(10):1949-1959.
FU T, YAN C F, LIN L J, et al. Analysis of genetic relationship of wild Cerasus in south China with SSR markers[J]. J Nucl Agric Sci, 2018, 32(10):1949-1959.DOI: 10.11869/j.issn.100-8551.2018.10.1949.
[13]
伊贤贵. 武夷山樱属资源调查及开发利用研究[D]. 南京: 南京林业大学, 2007.
YI X G. Studies on investigation and exploitation of the resources of Cerasus Mill.in Wuyi Mountain[D]. Nanjing: Nanjing Forestry University, 2007.
[14]
黎录松. 武夷山华中樱群落物种组成与结构特征[J]. 安徽农业科学, 2010, 38(6):3234-3237.
LI L S. Community composition and structure characteristics of Cerasus cordnaria in Wuyishan National Nature Reserve of Fujian[J]. J Anhui Agric Sci, 2010, 38(6):3234-3237.DOI: 10.13989/j.cnki.0517-6611.2010.06.132.
[15]
陈法志, 徐冬云, 蒋细旺, 等. 武汉市刘家山野生樱花资源调查及分析[J]. 江汉大学学报(自然科学版), 2017, 45(1):72-76.
CHEN F Z, XU D Y, JIANG X W, et al. Investigation and analysis of wild cherry blossom resources in Liujiashan area of Wuhan[J]. J Jianghan Univ Nat Sci Ed, 2017, 45(1):72-76.DOI: 10.16389/j.cnki.cn42-1737/n.2017.01.012.
[16]
邱靖, 朱弘, 陈昕, 等. 基于DIVA-GIS的水榆花楸适生区模拟及生态特征[J]. 北京林业大学学报, 2018, 40(9):25-32.
QIU J, ZHU H, CHEN X, et al. Modeling the suitable areas and ecological characteristics of Sorbus alnifolia using DIVA-GIS software[J]. J Beijing For Univ, 2018, 40(9):25-32.DOI: 10.13332/j.1000-1522.20180162.
[17]
邱浩杰, 孙杰杰, 徐达, 等. 基于MaxEnt模型预测鹅掌楸在中国的潜在分布区[J]. 浙江农林大学学报, 2020, 37(1):1-8.
QIU H J, SUN J J, XU D, et al. MaxEnt model-based prediction of potential distribution of Liriodendron chinense in China[J]. J Zhejiang A&F Univ, 2020, 37(1):1-8.DOI: 10.11833/j.issn.2095-0756.2020.01.001.
[18]
赵儒楠, 何倩倩, 褚晓洁, 等. 气候变化下千金榆在我国潜在分布区预测[J]. 应用生态学报, 2019, 30(11):3833-3843.
ZHAO R N, HE Q Q, CHU X J, et al. Prediction of potential distribution of Carpinus cordata in China under climate change[J]. Chin J Appl Ecol, 2019, 30(11):3833-3843.DOI: 10.13287/j.1001-9332.201911.020.
[19]
田聪, 穆尼热, 朱忠艳, 等. 基于DIVA-GIS快速获取气候信息的方法[J]. 农学学报, 2015, 5(5):109-113.
TIAN C, MU N R, ZHU Z Y, et al. Method for the rapid obtaining of climate data based on DIVA-GIS[J]. J Agric, 2015, 5(5):109-113.
[20]
朱弘, 尤禄祥, 李涌福, 等. 浙闽樱桃地理分布模拟及气候限制因子分析[J]. 热带亚热带植物学报, 2017, 25(4):315-322.
ZHU H, YOU L X, LI Y F, et al. Modeling the geographical distribution pattern and climatic limited factors of Cerasus schneideriana[J]. J Trop Subtrop Bot, 2017, 25(4):315-322.DOI: 10.11926/jtsb.3702.
[21]
孙李勇, 蒋政, 刘晨妮, 等. 基于DIVA-GIS的紫玉兰地理分布及适生性分析[J]. 植物科学学报, 2018, 36(6):804-811.
SUN L Y, JIANG Z, LIU C N, et al. Analysis of the adaptive and geographical distribution of Yulania liliiflora based on DIVA-GIS[J]. Plant Sci J, 2018, 36(6):804-811.DOI: 10.11913/PSJ.2095-0837.2018.60804.
[22]
李璇, 李垚, 方炎明. 基于优化的Maxent模型预测白栎在中国的潜在分布区[J]. 林业科学, 2018, 54(8):153-164.
LI X, LI Y, FANG Y M. Prediction of potential suitable distribution areas of Quercus fabri in China based on an optimized maxent model[J]. Sci Silvae Sin, 2018, 54(8):153-164.DOI: 10.11707/j.1001-7488.20180817.
[23]
GARAH K, BENTOUATI A. Using the MaxEnt model for assessing the impact of climate change on the Aurasian Aleppo pine distribution in Algeria[J]. Afr J Ecol, 2019, 57(4):500-511.DOI: 10.1111/aje.12630.
[24]
VANAGAS G. Receiver operating characteristic curves and comparison of cardiac surgery risk stratification systems[J]. Interact Cardiovasc Thorac Surg, 2004, 3(2):319-322.DOI: 10.1016/j.icvts.2004.01.008.
[25]
王运生, 谢丙炎, 万方浩, 等. ROC曲线分析在评价入侵物种分布模型中的应用[J]. 生物多样性, 2007, 15(4):365-372.
WANG Y S, XIE B Y, WAN F H, et al. Application of ROC curve analysis in evaluating the performance of alien species’ potential distribution models[J]. Biodivers Sci, 2007, 15(4):365-372.DOI: 10.3321/j.issn:1005-0094.2007.04.005.
[26]
符潮, 万春, 戴利燕, 等. 江西樱属物种多样性分析[J]. 北方园艺, 2016(20):71-76.
FU C, WAN C, DAI L Y, et al. Diversity of species analysis of Jiangxi Cerasus[J]. North Hortic, 2016(20):71-76.DOI: 10.11937/bfyy.201620020.
[27]
王华辰, 朱弘, 李涌福, 等. 中国特有植物雪落樱桃潜在分布及其生态特征[J]. 热带亚热带植物学报, 2020, 28(2):136-144.
WANG H C, ZHU H, LI Y F, et al. Potential distribution and ecological characteristic of Chinese endemic species Cerasus xueluoensis[J]. J Trop Subtrop Bot, 2020, 28(2):136-144.DOI: 10.11926/jtsb.4102.
[28]
NAN C H, WANG X R, TANG G G, et al. Cerasus xueluoensis(Rosaceae),a new species from China[J]. Ann Bot Fenn, 2013, 50(1/2):79-82.DOI: 10.5735/085.050.0114.
[29]
朱淑霞, 朱弘, 程琳, 等. 高盆樱桃与钟花樱桃的地理分布模拟及生态特征比较分析[J]. 广西植物, 2019, 39(10):1398-1406.
ZHU S X, ZHU H, CHENG L, et al. Modeling geographical distribution pattern and comparison of ecological characteristics between Cerasus cerasoides and C.campanulata[J]. Guihaia, 2019, 39(10):1398-1406.DOI: 10.11931/guihaia.gxzw201809004.
[30]
张兴旺, 李垚, 谢艳萍, 等. 气候变化对黄山花楸潜在地理分布的影响[J]. 植物资源与环境学报, 2018, 27(4):31-41.
ZHANG X W, LI Y, XIE Y P, et al. Effect of climate change on potential geographical distribution of Sorbus amabilis[J]. J Plant Resour Environ, 2018, 27(4):31-41.DOI: 10.3969/j.issn.1674-7895.2018.04.04.
[31]
江志红, 张霞, 王冀. IPCC-AR4模式对中国21世纪气候变化的情景预估[J]. 地理研究, 2008, 27(4):787-799.
JIANG Z H, ZHANG X, WANG J. Projection of climate change in China in the 21st century by IPCC-AR4 models[J]. Geogr Res, 2008, 27(4):787-799.DOI: 10.3321/j.issn:1000-0585.2008.04.007.
[32]
姜大膀, 王会军, 郎咸梅. 全球变暖背景下东亚气候变化的最新情景预测[J]. 地球物理学报, 2004, 47(4):590-596.
JIANG D P, WANG H J, LANG X M. East Asian climate change trend under global warming background[J]. Chin J Geophys, 2004, 47(4):590-596.DOI: 10.3321/j.issn:0001-5733.2004.04.007.
PDF(4522 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/