
Genetic diversity analyses of Quercus acutissima based on SSR markers
LYU Feng, XIE Xiaoman, HAN Biao, LU Yizeng, WANG Lei, DONG Xin, WANG Yan, LU Lu, LIU Li, ZONG Shaoning, LI Wenqing
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (3) : 109-116.
Genetic diversity analyses of Quercus acutissima based on SSR markers
【Objective】To provide a theoretical basis for the protection and use of Quercus acutissima germplasm resources, 150 individuals of Q. acutissima from eight natural populations distributed in seven provinces of China were selected as the research objects. Their genetic diversity and genetic structure were analyzed based on SSR molecular markers.【Method】A total of 18 pairs of SSR primers were screened and used to study the genetic diversity, molecular variance, genetic distance and genetic structure of Q. acutissima populations and corresponding individuals using AMOVA analysis, principal component analysis, cluster analysis and structure analysis. Software such as GenAIEx 6.51, MEGA 7.0.26 and Structure 2.3.4 were used in the data analysis.【Result 】 The average number of alleles (Na), effective alleles (Ne), the Shannon index (I) and observed heterozygosity (Ho) of the 18 SSR loci were 5.625, 4.104, 1.338 and 0.895, respectively. The average expected heterozygosity (He) was 0.645, and the 18 pairs of SSR primers that were screened showed abundant polymorphism. The genetic distance of the eight populations ranged from 0.222 to 1.587. The genetic consistency ranged from 0.205 to 0.801, the average coefficient of genetic differentiation (Fst) was 0.252, the average gene flow (Nm) was 1.140, and the average fixed index (F) was negative and was -0.441. The genetic diversity of the populations was high, the genetic differentiation was small, and there was heterozygote residues among the populations. A total of 98% of the variation came from within the population and 2% came from among the populations. UPGMA cluster analysis and structure analysis divided the eight populations into two groups, respectively. There were some differences in the individual composition of the two groups. The results of the principal component analysis were consistent with other results. The phenomena of cross introduction and gene introgression was present between the groups.【Conclusion】 The level of genetic diversity of Q. acutissima population is high, and the level of genetic differentiation is low. The genetic difference mainly exists in the population and presents the law of geographical variations in a southwest to northeast direction. For the protection of this species, areas with high genetic diversity should be protected as a priority, and the protection strategy of in situ conservation should be combined with ex situ breeding and preservation is proposed.
Quercus acutissima / natural population / simple-sequence-repeat (SSR) / genetic diversity / genetic structure
[1] |
|
[2] |
徐立安. 栎属群体与进化遗传研究进展[J]. 南京林业大学学报(自然科学版), 2002, 26(6):73-77.
|
[3] |
刘志龙, 虞木奎, 唐罗忠, 等. 麻栎资源研究进展及开发利用对策[J]. 中国林副特产, 2009(6):93-96.
|
[4] |
袁久志, 孙启时. 麻栎叶的化学成分研究[J]. 沈阳药科大学学报, 1999, 16(1):60-62.
|
[5] |
赵丹. 麻栎组培和扦插繁殖技术研究[D]. 南京: 南京林业大学, 2010.
|
[6] |
董章凯, 邢世岩, 王亚明, 等. 麻栎半同胞家系苗期特性分析[J]. 东北林业大学学报, 2011, 39(4):27-28,36.
|
[7] |
董玉峰. 麻栎群体内变异性和优良家系、无性系选择研究[D]. 泰安: 山东农业大学, 2008.
|
[8] |
叶青雷, 曾宪云. 麻栎SRAP-PCR体系优化与遗传多样性分析[J]. 生物技术, 2009, 19(3):24-27.
|
[9] |
彭礼琼, 金则新, 祁彩虹, 等. 麻栎ISSR-PCR扩增条件的优化[J]. 江苏农业科学, 2011, 39(4):30-32.
|
[10] |
孟旭. 麻栎的谱系地理学和遗传多样性研究[D]. 西安: 西北大学, 2017.
|
[11] |
徐小林, 徐立安, 黄敏仁, 等. 栓皮栎天然群体SSR遗传多样性研究[J]. 遗传, 2004, 26(5):683-688.
|
[12] |
秦英英, 韩海荣, 康峰峰, 等. 基于SSR标记的山西省辽东栎自然居群遗传多样性分析[J]. 北京林业大学学报, 2012, 34(2):61-65.
|
[13] |
王雁红, 俞琦, 杨佳, 等. 基于核微卫星的短柄枹栎居群遗传多样性和遗传结构[J]. 林业科学, 2015, 51(12):121-131.
|
[14] |
李文英, 顾万春, 周世良. 蒙古栎天然群体遗传多样性的AFLP分析[J]. 林业科学, 2003, 39(5):29-36.
|
[15] |
陈怀琼, 隋春, 魏建和. 植物SSR引物开发策略简述[J]. 分子植物育种, 2009, 7(4):845-851.
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
张昊. 中国栎属麻栎组三个近缘物种的群体遗传学和种群动态历史研究[D]. 西安: 西北大学, 2018.
|
[22] |
|
[23] |
杨梅, 张敏, 师守国, 等. 武当木兰种群遗传结构的ISSR分析[J]. 林业科学, 2014, 50(1):76-81.
|
[24] |
巨苗苗. 基于SLAF-seq技术的高山栎组植物系统发育和群体遗传学研究[D]. 西安: 西北大学, 2020.
|
[25] |
|
[26] |
|
[27] |
文亚峰,
微卫星标记以其独有的优点广泛应用于遗传学研究, 但无效等位基因(null alleles)的存在与潜在影响是其最大缺陷之一, 在研究工作中并未得到足够重视。本文在综述国内外相关文献的基础上, 明确了微卫星无效等位基因的概念与特点, 对其可能的产生原因、频率估算方法、相关分析软件及其对群体遗传学、亲本分析等研究结果的影响进行述评, 以期对无效等位基因有较为全面、深入的了解。微卫星无效等位基因的产生与SSR侧翼序列的变异(点突变、插入或缺失)及引物结合位点有关, 其与同工酶标记中的无效等位基因有本质区别, 并非基因本身的自然属性。虽然微卫星无效等位基因具有普遍性、复杂性和隐匿性等特点, 但完全可以通过Hardy-Weinberg平衡检验、亲子代基因型分析和重新设计引物等方法认识、检测并估算其频率。无效等位基因会对遗传学相关研究结果造成显著影响, 如降低群体遗传多样性, 加大群体间遗传分化; 降低亲本分析排除率, 甚至可能造成亲本分析结果的错误与混乱。今后研究工作中, 我们应对无效等位基因予以足够重视并谨慎对待, 从标记位点选择、无效等位基因数据调整及重新设计引物分析等多个方面尽可能减少和避免其影响, 以获得最真实的分析结果。
|
[28] |
|
[29] |
|
[30] |
|
[31] |
伊贤贵, 陈洁, 尤禄祥, 等. 山樱花群体遗传多样性的SSR分析[J]. 南京林业大学学报(自然科学版), 2018, 42(5):25-31.
|
[32] |
臧明月, 李璇, 方炎明. 基于SSR标记的白栎天然居群遗传多样性分析[J]. 南京林业大学学报(自然科学版), 2021, 45(1):63-69.
|
[33] |
|
[34] |
徐小林. 栓皮栎群体遗传结构研究[D]. 南京: 南京林业大学, 2003.
|
/
〈 |
|
〉 |