Transcriptional activity of the Bx-HSF-1 in Bursaphelenchus xylophilus (Aphelenchida: Aphelenchoididae)

ZHANG Ruizhi, JIANG Shengwei, WU Hao, CHEN Qiaoli, LI Danlei, WANG Feng

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (4) : 8-14.

PDF(2670 KB)
PDF(2670 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (4) : 8-14. DOI: 10.12302/j.issn.1000-2006.202102019

Transcriptional activity of the Bx-HSF-1 in Bursaphelenchus xylophilus (Aphelenchida: Aphelenchoididae)

Author information +
History +

Abstract

【Objective】 The transcriptional activity of Bx-HSF-1 and the expression of its target genes at the seven life stages of Bursaphelenchus xylophilus were studied to reveal its role in the growth and development of B. xylophilus. 【Method】 The CDS (coding sequence) of Bx-hsf-1 gene was constructed into plasmid pGBKT7 to obtain the yeast (Saccharomyces cerevisiae) bait expression vector pGBKT7-Bx-hsf-1. The self-activation of pGBKT7-Bx-hsf-1 was detected. RNA interference and transcriptome sequencing techniques were used to identify the differentially expressed genes of B. xylophilus after Bx-hsf-1 gene was knocked down. The gene interaction analysis of differentially expressed genes was analyzed, and the target genes that were directly regulated by Bx-HSF-1 were screened out. RT-qPCR (quantitative real-time PCR) was used to identify the expression levels of five genes in J2, DJ3, DJ4, J3, J4, female, and male stages of B. xylophilus. 【Result】 The pGBKT7-Bx-hsf-1 yeast turned blue on SD/-Trp/-His/-Ade+X-α-gal medium and could grow on SD/-Trp and SD/-Trp/-His/-Ade mediums. A yeast transactivation activity assay suggested that Bx-HSF-1 had transcriptional activity. RT-qPCR results revealed the significant suppression of Bx-hsf-1 after RNAi treatment for 12 h. The total 110 differentially expressed genes were identified using a transcriptome analysis, of which 86 were down regulated. Total five target genes (Bx-daf-21, Bx-hsp-1, Bx-hsp-70, Bx-sti and Bx-cdc) were filtered using a gene interaction analysis. The expression of Bx-daf-21 was consistent with the expression of Bx-hsf-1 in the development of seven life stages of B. xylophilus, whereas the expression of Bx-cdc in DJ3 and the expression of Bx-hsp-70 were inconsistent with the expression of Bx-hsf-1. The expression of Bx-hsp-1 and Bx-sti was not correlated with the expression of Bx-hsf-1 in the seven life stages. 【Conclusion】 Bx-HSF-1 had a transcriptional activation function and participated in the development process of B. xylophilus through transcriptional regulations.

Key words

Bursaphelenchus xylophilus / heat shock transcription factor / transcriptional activation / life stage

Cite this article

Download Citations
ZHANG Ruizhi , JIANG Shengwei , WU Hao , et al . Transcriptional activity of the Bx-HSF-1 in Bursaphelenchus xylophilus (Aphelenchida: Aphelenchoididae)[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2022, 46(4): 8-14 https://doi.org/10.12302/j.issn.1000-2006.202102019

References

[1]
丁晓磊, 张悦, 林司曦, 等. 基于高通量测序技术的松材线虫研究进展[J]. 南京林业大学学报(自然科学版), 2022, 46(4):1-7.
DING X L, ZHANG Y, LIN S X, et al. An overview of high-throughput sequencing techniques applied on Bursaphelenchus xylophilus[J]. J Nanjing For Univ(Nat Sci Ed): 2022, 46(4):1-7.DOI:10.12302/j.issn.1000-2006.202204039.
[2]
张星耀. 我国松材线虫病防控基础研究进展[C]// 第三届全国生物入侵大会论文摘要集——“全球变化与生物入侵”.海口, 2010: 1-5.
ZHANG X Y. Basic research of the pine wilt disease prevention and control progress[C]// Third National Conference of Biological Invasion Abstract: “Global change and biological invasions”. Haikou, 2010: 1-5.
[3]
叶建仁, 黄麟. 松材线虫病病原学研究的几个问题[J]. 中国森林病虫, 2012, 31(5):13-21,44.
YE J R, HUANG L. Some aspects of the pathogen of the pine wilt disease[J]. For Pest Dis, 2012, 31(5):13-21,44. DOI:10.3969/j.issn.1671-0886.2012.05.004.
[4]
赵捷, 韩骁, 石娟. 低温条件下松材线虫在中国的风险分布区预测[J]. 生物安全学报, 2017, 26(3):191-198.
ZHAO J, HAN X, SHI J. Potential distribution of Bursaphelenchus xylophilus in China due to adaptation cold conditions[J]. J Biosaf, 2017, 26(3):191-198.DOI:10.3969/j.issn.2095-1787.2017.03.003.
[5]
理永霞, 张星耀. 松材线虫入侵扩张趋势分析[J]. 中国森林病虫, 2018, 37(5):1-4.
LI Y X, ZHANG X Y. Analysis on the trend of invasion and expansion of Bursaphelenchus xylophilus[J]. For Pest Dis, 2018, 37(5):1-4.DOI:10.3969/j.issn.1671-0886.2018.05.001.
[6]
陈俏丽. 海藻糖代谢参与松材线虫L低温抗逆[D]. 哈尔滨: 东北林业大学, 2020.
CHEN Q L. Trehalose metabolism participates in pine wood nematode third-stage dispersal juvenile low temperature resistance[D]. Harbin: Northeast Forestry University, 2020.
[7]
EWALD C Y, CASTILLO-QUAN J I, BLACKWELL T K. Untangling longevity,dauer,and healthspan in Caenorhabditis elegans insulin/IGF-1-signalling[J]. Gerontology, 2018, 64(1):96-104.DOI:10.1159/000480504.
[8]
MORLEY J F, MORIMOTO R I. Regulation of longevity in Caenorhabditis elegans by heat shock factor and molecular chaperones[J]. Mol Biol Cell, 2004, 15(2):657-664.DOI:10.1091/mbc.e03-07-0532.
[9]
KIKUCHI T, COTTON J A, DALZELL J J, et al. Genomic insights into the origin of parasitism in the emerging plant pathogen Bursaphelenchus xylophilus[J]. PLoS Pathog, 2011, 7(9):e1002219.DOI:10.1371/journal.ppat.1002219.
[10]
GARSIN D A, VILLANUEVA J M, BEGUN J, et al. Long-lived C.elegans daf-2 mutants are resistant to bacterial pathogens[J]. Science, 2003, 300(5627):1921.DOI:10.1126/science.1080147.
[11]
KALETSKY R, MURPHY C T. The role of insulin/IGF-like signaling in C. elegans longevity and aging[J]. Dis Model Mech, 2010, 3(7/8):415-419.DOI:10.1242/dmm.001040.
[12]
BARNA J, PRINCZ A, KOSZTELNIK M, et al. Heat shock factor-1 intertwines insulin/IGF-1,TGF-β and cGMP signaling to control development and aging[J]. BMC Dev Biol, 2012, 12:32.DOI:10.1186/1471-213X-12-32.
[13]
HAJDU-CRONIN Y M, CHEN W J, STERNBERG P W. The L-type cyclin CYL-1 and the heat-shock-factor HSF-1 are required for heat-shock-induced protein expression in Caenorhabditis elegans[J]. Genetics, 2004, 168(4):1937-1949.DOI:10.1534/genetics.104.028423.
[14]
MAMIYA Y. Pathology of the pine wilt disease caused by Bursaphelenchus xylophilus[J]. Annu Rev Phytopathol, 1983, 21:201-220.DOI:10.1146/annurev.py.21.090183.001221.
[15]
王峰, 马玲, 陈俏丽, 等. 松材线虫热激转录因子Bx-HSF-1基因的克隆及表达分析[J]. 林业科学, 2016, 52(12):92-98.
WANG F, MA L, CHEN Q L, et al. Cloning and expression analysis of the heat shock transcription factor Bx-HSF-1 gene in Bursaphelenchus xylophilus (Aphelenchida:Aphelenchoididae)[J]. Sci Silvae Sin, 2016, 52(12):92-98.DOI:10.11707/j.1001-7488.20161211.
[16]
WANG F, WANG Z Y, LI D L, et al. Identification and characterization of a Bursaphelenchus xylophilus (Aphelenchida:Aphelenchoididae) thermotolerance-related gene:Bx-HSP90[J]. Int J Mol Sci, 2012, 13(7):8819-8833.DOI:10.3390/ijms13078819.
[17]
MATERN W M, RIFAT D, BADER J S, et al. Gene enrichment analysis reveals major regulators of Mycobacterium tuberculosis gene expression in two models of antibiotic tolerance[J]. Front Microbiol, 2018, 9:610.DOI:10.3389/fmicb.2018.00610.
[18]
CHEN Q L, ZHANG R Z, LI D L, et al. Genetic characteristics of Bursaphelenchus xylophilus third-stage dispersal juveniles[J]. Sci Rep, 2021, 11(1):3908.DOI:10.1038/s41598-021-82343-9.
[19]
CHEN Q L, ZHANG R Z, LI D L, et al. Trehalose in pine wood nematode participates in DJ3 formation and confers resistance to low-temperature stress[J]. BMC Genomics, 2021, 22(1):524.DOI:10.1186/s12864-021-07839-0.
[20]
BRUNQUELL J, RAYNES R, BOWERS P, et al. CCAR-1 is a negative regulator of the heat-shock response in Caenorhabditis elegans[J]. Aging Cell, 2018, 17(5):e12813.DOI:10.1111/acel.12813.
[21]
PRAHLAD V, MORIMOTO R I. Integrating the stress response:lessons for neurodegenerative diseases from C. elegans[J]. Trends Cell Biol, 2009, 19(2):52-61.DOI:10.1016/j.tcb.2008.11.002.
[22]
BRUNQUELL J, MORRIS S, LU Y, et al. The genome-wide role of HSF-1 in the regulation of gene expression in Caenorhabditis elegans[J]. BMC Genomics, 2016, 17:559.DOI:10.1186/s12864-016-2837-5.
[23]
LI D L, WANG F, WANG C, et al. MicroRNA-mediated susceptible poplar gene expression regulation associated with the infection of virulent Melampsora larici-Populina[J]. BMC Genomics, 2016, 17:59.DOI:10.1186/s12864-015-2286-6.
[24]
JONES J T, MOENS M, MOTA M, et al. Bursaphelenchus xylophilus: opportunities in comparative genomics and molecular host-parasite interactions[J]. Mol Plant Pathol, 2008, 9(3):357-368.DOI:10.1111/j.1364-3703.2007.00461.x.
[25]
SHINYA R, MORISAKA H, TAKEUCHI Y, et al. Comparison of the surface coat proteins of the pine wood nematode appeared during host pine infection and in vitro culture by a proteomic approach[J]. Phytopathology, 2010, 100(12):1289-1297.DOI:10.1094/PHYTO-04-10-0109.
[26]
TANAKA S E, DAYI M, MAEDA Y, et al. Stage-specific transcriptome of Bursaphelenchus xylophilus reveals temporal regulation of effector genes and roles of the dauer-like stages in the life cycle[J]. Sci Rep, 2019, 9(1):6080.DOI:10.1038/s41598-019-42570-7.
[27]
SHI Y, MOSSER D D, MORIMOTO R I. Molecular chaperones as HSF1-specific transcriptional repressors[J]. Genes Dev, 1998, 12(5):654-666.DOI:10.1101/gad.12.5.654.
[28]
DEVANEY E. Thermoregulation in the life cycle of Nematodes[J]. Int J Parasitol, 2006, 36(6):641-649.DOI:10.1016/j.ijpara.2006.02.006.
PDF(2670 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/