
Locating individual tree from high resolution satellite images based on CV model
CHENG Xiaofei, WU Gang
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (5) : 143-151.
Locating individual tree from high resolution satellite images based on CV model
【Objective】Traditional forest resources surveys take sub-compartments as a unit, and use sampling or a census to obtain tree information. High resolution remote sensing images can be used to improve forest resource surveys from stand accuracy to the individual tree level, as well as extracting individual tree information such as the individual tree position, structural parameters and tree species. An individual tree database can then be established to implement intensive management for individual trees. This is of considerable importance in achieving precision forestry, and especially the sustainable management of urban trees. In recent years, research on individual tree locations based on remote sensing images has increased. However, the use of traditional methods can lead to missing and misjudging individual crown and the overlapping crown area.【Method】This paper attempts to apply a method based on a Chan-Vase (CV) model for individual tree localization. The forest area is first extracted based on the greenness segmentation, so that the individual tree localization algorithm only works on the tree area. The Gaussian filtering method is then used to reduce the noise generated during the process of image formation and to enhance the difference between the canopy and non-canopy. The local maximum region is extracted by combining the morphological features of the tree crown and its image spectral features, and the connected region is searched and marked. The CV model is then used to construct the level set function, and the initial contour line is iterated to obtain the individual tree crown contour. Finally, the individual tree location information is calculated. Seven high-resolution satellite images of different forest types including coniferous forest, broad-leaved forest, economic forest, and non-forest stands were selected successively for this paper. This was based on visual interpretation data as a reference, and compared with the traditional individual tree positioning method for experimental analysis.【Result】Compared with traditional methods such as the gradient watershed method, the marker watershed method, and the local maximum method, the individual tree location method based on the CV model has a higher matching rate with an average improvement of nearly 23%.【Conclusion】By automatically setting the initial contour, this research method solves the problem that CV model often use interactive or manual settings for the initial contour position. This is inefficient and leads to considerable differences in the results. It can also better deal with the joint and overlap conditions of the tree crowns and has a better positioning effect with strong application potential.
Chan-Vase (CV) model / individual tree location / high resolution satellite image / individual tree crown extraction
[1] |
周杨杨, 冯仲科, 陈世林. 我国面向森林资源管理的监测体系创新研究[J]. 世界林业研究, 2020, 33(2):83-89.
|
[2] |
|
[3] |
|
[4] |
|
[5] |
戴晓军. 广东省古树名木信息管理系统正式启用[J]. 国土绿化, 2017(6):55.
|
[6] |
丁天茼, 何建勇. 北京编制首张“雌株密度图” 精准施策治理杨柳飞絮[J]. 绿化与生活, 2019(5):21-22.
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
孙振峰, 张晓丽, 李霓雯. 机载与星载高分遥感影像单木树冠分割方法和适宜性对比[J]. 北京林业大学学报, 2019, 41(11):66-75.
|
[12] |
刘会玲, 张晓丽, 张莹, 等. 机载激光雷达单木识别研究进展[J]. 激光与光电子学进展, 2018, 55(8):40-48.
|
[13] |
|
[14] |
柯樱海, 李小娟, 宫辉力. 遥感技术在自动化森林资源清查中的应用研究[M]. 北京: 中国环境出版社, 2015:1-17
|
[15] |
甄贞, 赵颖慧. 单木树冠遥感法提取原理与技术[M]. 北京: 科学出版社, 2017:2-65.
|
[16] |
|
[17] |
郑鑫, 王瑞瑞, 靳茗茗. 基于形态学阈值标记分水岭算法的高分辨率影像单木树冠提取[J]. 中南林业调查规划, 2017, 36(4):30-35,57.
|
[18] |
|
[19] |
姜仁荣, 汪春燕, 沈利强, 等. 基于高分辨率遥感图像的荔枝林树冠信息提取方法研究[J]. 农业机械学报, 2016, 47(9):17-22.
|
[20] |
张凝, 张晓丽, 叶栗. 基于改进爬峰法高分辨率遥感影像分割的树冠提取[J]. 农业机械学报, 2014, 45(12):294-300.
|
[21] |
董天阳, 周棋正. 基于形态Snake模型的遥感影像的单木树冠检测算法[J]. 计算机科学, 2018, 45(S2):269-273,291.
|
[22] |
刘玉锋, 潘英, 李虎. 基于高空间分辨率遥感数据的天山云杉树冠信息提取研究[J]. 国土资源遥感, 2019, 31(4):112-119.
|
[23] |
|
[24] |
邓广. 高空间分辨率遥感影像单株立木识别与树冠分割算法研究[D]. 北京: 中国林业科学研究院, 2009.
|
[25] |
李明华, 陈雨竹, 周淑芳, 等. 运用分水岭算法对航片数据的单木信息提取与识别[J]. 东北林业大学学报, 2019, 47(9):58-62,70.
|
[26] |
滕文秀, 温小荣, 王妮, 等. 基于迭代H-minima改进分水岭算法的高分辨率遥感影像单木树冠提取[J]. 激光与光电子学进展, 2018, 55(12):499-507.
|
[27] |
|
[28] |
|
[29] |
张开华. 主动轮廓模型在图像分割中的应用研究[D]. 合肥: 中国科学技术大学, 2009.
|
[30] |
王芳梅, 范虹,
|
[31] |
耿楠, 于伟, 宁纪锋. 基于水平集和先验信息的农业图像分割方法[J]. 农业机械学报, 2011, 42(9):167-172.
|
[32] |
白明月, 薛河儒, 姜新华, 等. 改进C-V模型在YCbCr空间下的羊体图像分割[J]. 中国农业大学学报, 2018, 23(10):137-143.
|
[33] |
胡秋霞, 田杰, 何东健, 等. 基于改进型C-V模型的植物病斑图像分割[J]. 农业机械学报, 2012, 43(5):157-161.
|
[34] |
冯冬竹, 范琳琳, 余航, 等. 自适应轮廓的变分水平集复杂背景多目标检测[J]. 软件学报, 2017, 28(10):2797-2810.
|
[35] |
白雪飞, 王文剑. 自适应初始轮廓的Chan-Vese模型图像分割方法[J]. 计算机科学与探索, 2013, 7(12):1115-1124.
|
[36] |
刘文国, 刘玲, 袁玉欣. 不同黑杨无性系叶片及单木水平蒸腾特性研究[J]. 林业建设, 2012(4):7-16.
|
[37] |
刘江俊. 基于无人机影像的单木识别与单木结构参数提取研究[D]. 杭州: 浙江农林大学, 2020.
|
[38] |
徐永胜, 杨玉泽, 林文树. 基于不同拼接算法的无人机林区影像拼接效果研究[J]. 森林工程, 2020, 36(1): 50-59.
|
[39] |
陈日强, 李长春, 杨贵军, 等. 无人机机载激光雷达提取果树单木树冠信息[J]. 农业工程学报, 2020, 36(22):50-59.
|
[40] |
李丹, 张俊杰, 赵梦溪. 基于FCM和分水岭算法的无人机影像中林分因子提取[J]. 林业科学, 2019, 55(5):180-187.
|
[41] |
|
[42] |
|
[43] |
马益杭, 占利军, 谢传节, 等. 连通域标记算法的并行化研究[J]. 地理与地理信息科学, 2013, 29(4):67-71,2.
|
[44] |
董新宇, 李家国, 陈瀚阅, 等. 无人机遥感影像林地单株立木信息提取[J]. 遥感学报, 2019, 23(6):1269-1280.
|
/
〈 |
|
〉 |