Responses of the non-structural carbohydrates and rhizosphere soil enzymes of Clematis fruticosa to nitrogen deposition and inoculation mycorrhizal fungi

ZHANG Xiaorong, DUAN Guangde, HAO Longfei, LIU Tingyan, ZHANG You, ZHANG Shengxi

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (1) : 171-178.

PDF(1505 KB)
PDF(1505 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (1) : 171-178. DOI: 10.12302/j.issn.1000-2006.202103006

Responses of the non-structural carbohydrates and rhizosphere soil enzymes of Clematis fruticosa to nitrogen deposition and inoculation mycorrhizal fungi

Author information +
History +

Abstract

【Objective】The responses of plant rhizosphere soil enzymes and non-structural carbohydrates (NSC) were investigated in relation to nitrogen deposition and inoculation with mycorrhizal fungi. Strategies for the rhizosphere micro-ecological environment and plant growth were explored in the context of changes to global nitrogen deposition.【Method】 One year old Clematis fruticosa mycorrhizal and non-mycorrhizal seedlings (serial No.-M) were subjected to microcosm experiments. The inoculation treatments included single inoculation (Rhizophagus intraradices, serial No. +R; Funneliformis mosseae, serial No. +F) and mixed inoculation (R. intraradices and F. mosseae 1:1 mixture fungi agents, serial No. +RF). Four nitrogen deposition treatments were established: no nitrogen [CK, 0 g/(m2·a)], low nitrogen [LN, 3 g/(m2·a)], medium nitrogen [MN, 6 g/(m2·a) ] and high nitrogen [HN, 9 g/(m2·a)]. The NSC [i.e., soluble sugar (SS) and starch (ST)], and rhizosphere soil enzymes [i.e., β-1, 4-glucosidase (BG), leucine aminopeptidase (LAP), β-1,4-N-acetylglucosaminidase (NAG), acid phosphatase (ACP), and alkaline phosphatase (ALP)] of seedlings were determined following the inoculation and nitrogen deposition treatments. One-way analysis of variance, and two-factor interaction and correlation analyses were used to determine the effect of different inoculation treatments with increasing nitrogen deposition in terms of the carbon, nitrogen and phosphorus related enzymatic activities in the seedlings rhizosphere. Additionally, the allocation of NSCs in seedlings organs were explored in response to the inoculation with mycorrhizal fungi and nitrogen deposition.【Result】① In addition to BG activity in the soil rhizosphere of C. fruticosa seedlings, the nitrogen deposition, inoculation with mycorrhizal fungi, and their interactions notably affected the nitrogen and phosphorus related enzymes. Under HN treatment, the NAG activity in the soil rhizosphere had notably decreased through the inoculation treatments. The ACP and ALP activities related to the soil rhizosphere phosphorus had notably increased under the -M and HN treatments. The ALP activity peaked in the HN treatment under the +R and +F treatments. ② The NSC content of C. fruticosa seedlings was notably affected by nitrogen deposition, inoculation with mycorrhizal fungi, and their interactions. Under the nitrogen deposition treatments, the contents of SS, ST and NSC of seedlings in the inoculation treatments were higher than those without the inoculation treatment; the SS, ST and NSC contents peaked in the +F treatment. ③ The seedling NSC content in the -M treatment in ascending order was: stem < root < leaf, while that for the inoculation treatments (i.e., LN, MN, and HN) was: root < stem < leaf. Under the HN treatment, the ST and NSC contents in roots, and the SS and NSC contents in the stems and leaves of seedlings peaked in the +F treatment. ④ The SS, ST and NSC contents were notably negatively correlated with soil nitrogen-related NAG activity; however, they were notably positively correlated with soil phosphorus and carbon-related enzymes under nitrogen deposition and inoculation with mycorrhizal fungi. The correlation coefficient was the maximum between the SS and ST contents and the ALP activities related to phosphorus, while it was at a minimum between the SS and ST contents and the BG activities related to carbon under the nitrogen deposition and inoculation treatments.【Conclusion】The effect of nitrogen and phosphorus-related enzymatic activities in the soil rhizosphere of C. fruticosa seedlings under nitrogen deposition and inoculation treatments was higher than carbon-related enzymatic activities. Nitrogen deposition notably enhanced the phosphatase activity in the soil rhizosphere of mycorrhizal seedlings. Inoculation treatments increased the NSC content of seedlings under nitrogen deposition, the most significant effect being observed for the mycorrhizal fungi of F. mosseae. The distribution of NSC in seedling roots had increased notably under a high nitrogen environment.

Key words

Clematis fruticosa / arbuscular mycorrhizal fungi / nitrogen deposition / soil enzyme activity / non-structural carbohydrates

Cite this article

Download Citations
ZHANG Xiaorong , DUAN Guangde , HAO Longfei , et al . Responses of the non-structural carbohydrates and rhizosphere soil enzymes of Clematis fruticosa to nitrogen deposition and inoculation mycorrhizal fungi[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2022, 46(1): 171-178 https://doi.org/10.12302/j.issn.1000-2006.202103006

References

[1]
李宗明, 沈菊培, 张丽梅, 等. 模拟氮沉降对干旱半干旱温带草原土壤细菌群落结构的影响[J]. 环境科学, 2018, 39(12):5665-5671.
LI Z M, SHEN J P, ZHANG L M, et al. Effects of stimulated nitrogen deposition on the bacterial community structure of semiarid temperate grassland[J]. Environ Sci, 2018, 39(12):5665-5671.DOI: 10.13227/j.hjkx.201805043.
[2]
毛晋花, 邢亚娟, 马宏宇, 等. 氮沉降对植物生长的影响研究进展[J]. 中国农学通报, 2017, 33(29):42-48.
MAO J H, XING Y J, MA H Y, et al. Research progress of nitrogen deposition effect on plant growth[J]. Chin Agric Sci Bull, 2017, 33(29):42-48.
[3]
康静, 韩国栋, 任海燕, 等. 不同降水条件下荒漠草原植物的养分含量及回收对增温和氮素添加的响应[J]. 西北植物学报, 2019, 39(9):1651-1660.
KANG J, HAN G D, REN H Y, et al. Responses of plant nutrient contents and resorption to warming and nitrogen addition under different precipitation conditions in a desert grassland[J]. Acta Bot Boreali Occidentalia Sin, 2019, 39(9):1651-1660.DOI: 10.7606/j.issn.1000-4025.201909.1651.
[4]
鲁显楷, 毛晋花, 张勇群, 等. 模拟大气氮沉降对中国森林生态系统影响的研究进展[J]. 热带亚热带植物学报, 2019, 27(5):500-522.
LU X K, MAO J H, ZHANG Y Q, et al. Effects of simulated atmospheric nitrogen deposition on forest ecosystems in China:an overview[J]. J Trop Subtrop Bot, 2019, 27(5):500-522.DOI: 10.11926/jtsb.4113.
[5]
张春楠, 张瑞芳, 王红, 等. 丛枝菌根真菌影响作物非生物胁迫耐受性的研究进展[J]. 微生物学通报, 2020, 47(11):3880-3891.
ZHANG C N, ZHANG R F, WANG H, et al. Effects of arbuscular mycorrhizal fungi on abiotic stress tolerance in crops:a review[J]. Microbiol China, 2020, 47(11):3880-3891.DOI: 10.13344/j.microbiol.china.200028.
[6]
陈保冬, 于萌, 郝志鹏, 等. 丛枝菌根真菌应用技术研究进展[J]. 应用生态学报, 2019, 30(3):1035-1046.
CHEN B D, YU M, HAO Z P, et al. Research progress in arbuscular mycorrhizal technology[J]. Chin J Appl Ecol, 2019, 30(3):1035-1046.DOI: 10.13287/j.1001-9332.201903.037.
[7]
姜琦, 郭润泉, 宋涛涛, 等. 增温与氮添加对不同季节杉木幼苗细根不同形态氮吸收动力学的影响[J]. 生态学报, 2020, 40(9):2996-3005.
JIANG Q, GUO R Q, SONG T T, et al. Effects of warming and nitrogen addition on nitrogen uptake kinetics of fine roots of Cunninghamia lanceolata seedlings in different seasons[J]. Acta Ecol Sin, 2020, 40(9):2996-3005.DOI: 10.5846/stxb201905070924.
[8]
周慧敏, 李品, 冯兆忠, 等. 地表臭氧浓度升高与干旱交互作用对杨树非结构性碳水化合物积累和叶根分配的短期影响[J]. 植物生态学报, 2019, 43(4):296-304.
Abstract
人类活动加剧和全球变化导致植物在生长季同时受到高浓度地表臭氧(O<sub>3</sub>)和干旱的双重胁迫。为了探究两者对植物非结构性碳水化合物(TNC)积累和分配的影响, 该实验采用开顶式气室研究了2种O<sub>3</sub>浓度(CF, 过滤空气; NF40, NF (未过滤空气) + 40 nmol·mol <sup>-1</sup> O<sub>3</sub>)和2个水分处理(对照, 充分灌溉; 干旱, 非充分灌溉)及其交互作用对杨树基因型‘546’ (Populus deltoides cv. ‘55/56’ × P. deltoides cv. ‘Imperial’)叶片和细根中TNC及其组分(葡萄糖、果糖、蔗糖、多糖、总可溶性糖和淀粉)含量的影响。结果表明: O<sub>3</sub>浓度升高显著降低杨树叶片中淀粉和TNC的含量, 增加葡萄糖、果糖和总可溶性糖含量, 但对细根中淀粉和总可溶性糖含量的影响不显著。干旱胁迫显著增加细根中果糖和多糖含量, 降低蔗糖含量, 但对叶片中淀粉和总可溶性糖含量的影响不显著。充分灌溉下O<sub>3</sub>浓度升高显著增加了杨树叶片多糖和总可溶性糖含量, 而干旱下O<sub>3</sub>浓度升高显著增加了TNC含量的根叶比。该研究结果发现O<sub>3</sub>主要影响叶片中TNC及各组分的含量, 而干旱主要影响细根中TNC及各组分的含量。从杨树叶片TNC的响应来看, 适度的水分限制有助于减缓O<sub>3</sub>的负面伤害。
ZHOU H M, LI P, FENG Z Z, et al. Short-term effects of combined elevated ozone and limited irrigation on accumulation and allocation of non-structural carbohydrates in leaves and roots of poplar sapling[J]. Chin J Plant Ecol, 2019, 43(4):296-304.DOI: 10.17521/cjpe.2019.0032.
[9]
郑云普, 王贺新, 娄鑫, 等. 木本植物非结构性碳水化合物变化及其影响因子研究进展[J]. 应用生态学报, 2014, 25(4):1188-1196.
ZHENG Y P, WANG H X, LOU X, et al. Changes of non-structural carbohydrates and its impact factors in trees: a review[J]. Chin J Appl Ecol, 2014, 25(4):1188-1196.DOI: 10.13287/j.1001-9332.2014.0110.
[10]
谷利茶, 王国梁. 氮添加对油松幼苗不同径级细根碳水化合物含量的影响[J]. 生态学杂志, 2017, 36(8):2184-2190.
GU L C, WANG G L. Effects of N addition on carbohydrate contents in different diameter fine roots of Pinus tabuliformis seedlings[J]. Chin J Ecol, 2017, 36(8):2184-2190.DOI: 10.13292/j.1000-4890.201708.033.
[11]
马慧君, 张雅坤, 许文欢, 等. 模拟氮沉降对杨树人工林土壤微生物群落碳源利用类型的影响[J]. 南京林业大学学报(自然科学版), 2017, 41(5):1-6.
MA H J, ZHANG Y K, XU W H, et al. Effects of nitrogen deposition on soil microbial community C-source metabolism of poplar plantation[J]. J Nanjing For Univ (Nat Sci Ed), 2017, 41(5):1-6.DOI: 10.3969/j.issn.1000-2006.201606.014.
[12]
李争艳, 徐智明, 师尚礼, 等. 江淮地区不同品种光敏型高丹草对土壤微生态环境的影响[J]. 草地学报, 2019, 27(2):326-335.
LI Z Y, XU Z M, SHI S L, et al. Effects of four cultivars of photosensitive Sorghum sudangrass hybrid on soil micro-ecological environment in Jiang-Huai region[J]. Acta Agrectir Sin, 2019, 27(2):326-335.DOI: 10.11733/j.issn.1007-0435.2019.02.008.
[13]
马伟伟, 王丽霞, 李娜, 等. 不同氮水平对川西亚高山林地土壤酶活性的影响[J]. 生态学报, 2019, 39(19):7218-7228.
MA W W, WANG L X, LI N, et al. Dynamic effects of nitrogen deposition on soil enzyme activities in soils with different moisture content[J]. Acta Ecol Sin, 2019, 39(19):7218-7228.DOI: 10.5846/stxb201806071284.
[14]
王凯, 雷虹, 夏扬, 等. 杨树幼苗非结构性碳水化合物对增加降水和氮添加的响应[J]. 应用生态学报, 2017, 28(2):399-407.
WANG K, LEI H, XIA Y, et al. Responses of non-structural carbohydrates of poplar seedlings to increased precipitation and nitrogen addition[J]. Chin J Appl Ecol, 2017, 28(2):399-407.DOI: 10.13287/j.1001-9332.201702.012.
[15]
向芬, 李维, 刘红艳, 等. 氮素水平对茶树叶片氮代谢关键酶活性及非结构性碳水化合物的影响[J]. 生态学报, 2019, 39(24):9052-9057.
XIANG F, LI W, LIU H Y, et al. Effects of nitrogen levels on key enzyme activities and non-structural carbohydrates in nitrogen metabolism in tea leaves[J]. Acta Ecol Sin, 2019, 39(24):9052-9057.DOI: 10.5846/stxb201810112203.
[16]
宰学明, 郝振萍, 赵辉, 等. 丛枝菌根化滨梅苗的根际微生态环境[J]. 林业科学, 2014, 50(1):41-48.
ZAI X M, HAO Z P, ZHAO H, et al. Rhizospheric niche of Beach Plum seedlings colonized by arbuscular mycorrhizal fungi[J]. Sci Silvae Sin, 2014, 50(1):41-48.DOI: 10.11707/j.1001-7488.201401.07.
[17]
何健, 刘慧杰, 谢磊. 铁线莲属灌木铁线莲组(毛茛科)研究进展[J]. 南京林业大学学报(自然科学版), 2018, 42(1):156-162.
HE J, LIU H J, XIE L. Research advances of Clematis Sect.(Ranunculaceae)[J]. J Nanjing For Univ (Nat Sci Ed), 2018, 42(1):156-162.DOI: 10.3969 /j.issn.1000-2006.201705.023.
[18]
张菊, 康荣华, 赵斌, 等. 内蒙古温带草原氮沉降的观测研究[J]. 环境科学, 2013, 34(9):3552-3556.
ZHANG J, KANG R H, ZHAO B, et al. Monitoring nitrogen deposition on temperate grassland in Inner Mongolia[J]. Environ Sci, 2013, 34(9):3552-3556.DOI: 10.13227/j.hjkx.201309.013.
[19]
刘婷岩, 郝龙飞, 王续富, 等. 氮沉降及菌根真菌对长白落叶松苗木根系构型及根际酶活性的影响[J]. 植物研究, 2021, 41(1):145-151.
LIU T Y, HAO L F, WANG X F, et al. Effects of nitrogen deposition and ectomycorrhizal fungi on root architecture and rhizosphere soil enzyme activities of Larix olgensis seedlings[J]. Bull Bot Res, 2021, 41(1):145-151.DOI: 10.7525/j.issn.1673-5102. 202101.018.
[20]
SINSABAUGH R L, KLUG M J, COLLINS H P, et al. Characterizing soil microbial communities[G]//ROBERTSON G P,COLEMAN D,BLEDSOE C S, et al.Standard soil methods for long-term ecological research. New York: Oxford University Press, 1999:318-348.
[21]
BUYSSE J, MERCKX R. An improved colorimetric method to quantify sugar content of plant tissue[J]. J Exp Bot, 1993, 44(10):1627-1629.DOI: 10.1093/jxb/44.10.1627.
[22]
IGALAVITHANA A D, FAROOQ M, KIM K H, et al. Determining soil quality in urban agricultural regions by soil enzyme-based index[J]. Environ Geochem Health, 2017, 39(6):1531-1544.DOI: 10.1007/s10653-017-9998-2.
[23]
李丽娟, 谢婷婷, 张松林, 等. 三峡库区消落带4种适生植物根际与非根际土壤养分与酶活性特征研究[J]. 生态学报, 2020, 40(21):7611-7620.
LI L J, XIE T T, ZHANG S L, et al. Characteristics of nutrient content and enzyme activity in the rhizosphere and bulk soils of four suitable plants in the hydro-fluctuation zone of the Three Gorges Reservoir[J]. Acta Ecol Sin, 2020, 40(21):7611-7620.DOI: 10.5846/stxb201905080935.
[24]
许淼平, 任成杰, 张伟, 等. 土壤微生物生物量碳氮磷与土壤酶化学计量对气候变化的响应机制[J]. 应用生态学报, 2018, 29(7):2445-2454.
XU M P, REN C J, ZHANG W, et al. Responses mechanism of C:N stoichiometry of soil microbial biomass and soil enzymes to climate change[J]. Chin J Appl Ecol, 2018, 29(7):2445-2454.DOI: 10.13287/j.1001-9332.201807.041.
[25]
田沐雨, 于春甲, 汪景宽, 等. 氮添加对草地生态系统土壤pH、磷含量和磷酸酶活性的影响[J]. 应用生态学报, 2020, 31(9):2985-2992.
TIAN M Y, YU C J, WANG J K, et al. Effect of nitrogen additions on soil pH,phosphorus contents and phosphatase activities in grassland[J]. Chin J Appl Ecol, 2020, 31(9):2985-2992.DOI: 10.13287/j.1001-9332.202009.034.
[26]
冯慧芳, 余明, 薛立. 外源性氮磷添加及林分密度对大叶相思林土壤酶活性的影响[J]. 生态学报, 2020, 40(14):4894-4902.
FENG H F, YU M, XUE L. Effects of nitrogen and phosphorus additions on soil enzyme activities in Acacia auriculiformis stands under different planting densities[J]. Acta Ecol Sin, 2020, 40(14):4894-4902.DOI: 10.5846/stxb201910162163.
[27]
邓玉峰, 田善义, 成艳红, 等. 模拟氮沉降下施石灰对休耕红壤优势植物根际土壤微生物群落的影响[J]. 土壤学报, 2019, 56(6):1449-1458.
DENG Y F, TIAN S Y, CHENG Y H, et al. Effects of liming on rhizosphere soil microbial communities of dominant plants in fallowed red soil under simulated nitrogen deposition[J]. Acta Pedologica Sinica, 2019, 56(6):1449-1458. DOI: 10.11766/trxb201808260218.
[28]
付晓峰, 张桂萍, 张小伟, 等. 溶磷细菌和丛枝菌根真菌接种对南方红豆杉生长及根际微生物和土壤酶活性的影响[J]. 西北植物学报, 2016, 36(2):353-360.
FU X F, ZHANG G P, ZHANG X W, et al. Effects of PSB and AMF on growth,microorganisms and soil enzyme activities in the rhizosphere of Taxus chinensis var.mairei seedlings[J]. Acta Bot Boreali Occidentalia Sin, 2016, 36(2):353-360.DOI: 10.7606/j.issn.1000-4025.201602.0353.
[29]
张亦弛, 郭素娟. 植物生长延缓剂对板栗苗枝条生长及叶片非结构性碳水化合物的影响[J]. 南京林业大学学报(自然科学版), 2020, 44(6):85-93.
ZHANG Y C, GUO S J. Effects of plant growth retardants on the growth of branches and non-structural carbohydrates in leaves of chestnut (Castanea mollissima) seedlings[J]. J Nanjing For Univ (Nat Sci Ed), 2020, 44(6):85-93.DOI: 10.3969/j.issn.1000-2006.201903.071.
[30]
陈翠莲, 张继强, 赵通, 等. 追施氮肥对‘李广杏’树体营养及光合特性的影响[J]. 经济林研究, 2019, 37(2):13-22.
CHEN C L, ZHANG J Q, ZHAO T, et al. Effects of top dressing with nitrogen on nutrition and photosynthetic characteristics of ‘Liguang Xing’[J]. Non Wood For Res, 2019, 37(2):13-22.DOI: 10.14067/j.cnki.1003-8981.201902.003.
[31]
赵喆, 金则新. 模拟氮沉降对夏蜡梅幼苗生长及非结构性碳水化合物的影响[J]. 植物研究, 2020, 40(1):41-49.
ZHAO Z, JIN Z X. Effects of simulated nitrogen deposition on the growth and the content of non-structure carbohydrate of Sinocalycanthus chinensis seedlings[J]. Bull Bot Res, 2020, 40(1):41-49.DOI: 10.7525/j.issn.1673-5102.202001.007.
[32]
张婉婷, 单立山, 李毅, 等. 氮添加与降雨变化对红砂幼苗非结构性碳水化合物的影响[J]. 生态学杂志, 2020, 39(3):803-811.
ZHANG W T, SHAN L S, LI Y, et al. Effects of nitrogen addition and precipitation change on non-structural carbohydrates in Reaumuria soongorica seedlings[J]. Chin J Ecol, 2020, 39(3):803-811.DOI: 10.13292/j.1000-4890.202003.017.

RIGHTS & PERMISSIONS

Copyright reserved © 2022
PDF(1505 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/