JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (2): 135-142.doi: 10.12302/j.issn.1000-2006.202103018
Previous Articles Next Articles
YUAN Ming1(), ZHU Mingwei1, HOU Jing1, ZHU Yingying2,3, LI Shuxian1,*()
Received:
2021-03-08
Accepted:
2021-06-05
Online:
2022-03-30
Published:
2022-04-08
Contact:
LI Shuxian
E-mail:1641071953@qq.com;shuxianli@njfu.com.cn
CLC Number:
YUAN Ming, ZHU Mingwei, HOU Jing, ZHU Yingying, LI Shuxian. Changes of water content in Robinia pseudoacacia seeds during imbibition by a low nuclear magnetic resonance[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(2): 135-142.
Table 1
"
时间/h time | T21 | T22 | T23 | ||||||
---|---|---|---|---|---|---|---|---|---|
峰起始点 onset time of peak | 峰结束点 end time of peak | 弛豫范围 relaxation range | 峰起始点 onset time of peak | 峰结束点 end time of peak | 弛豫范围 relaxation range | 峰起始点 onset time of peak | 峰结束点 end time of peak | 弛豫范围 relaxation range | |
3 | 0.01±0.00 a | 1.05±0.02 c | 1.04±0.04 c | 1.08±0.04 de | 95.63±6.63 d | 94.55±6.67 c | 102.51±7.11 d | 542.46±37.64 f | 439.95±30.53 f |
6 | 0.01±0.00 a | 1.22±0.10 bc | 1.20±0.10 bc | 1.28±0.09 cd | 139.49±23.29 abc | 138.20±23.21 ab | 149.51±24.97 abc | 541.59±0.00 f | 392.07±24.97 f |
9 | 0.01±0.00 a | 1.30±0.16 abc | 1.28±0.16 abc | 1.39±0.17 bcd | 123.22±4.88 c | 121.83±5.05 b | 132.08±5.23 c | 716.09±49.68 ef | 584.01±49.85 ef |
12 | 0.01±0.00 a | 1.52±0.16 ab | 1.51±0.16 ab | 1.63±0.18 abcd | 126.24±8.76 bc | 124.61±8.88 b | 135.32±9.39 bc | 803.07±31.81 ef | 667.75±24.26 ef |
24 | 0.01±0.00 a | 1.54±0.36 ab | 1.53±0.36 ab | 1.65±0.39 abcd | 138.55±10.84 abc | 136.90±11.22 ab | 148.52±11.62 abc | 1 194.04±128.51 cd | 1 045.53±120.18 cd |
36 | 0.01±0.00 a | 1.68±0.29 ab | 1.67±0.29 ab | 2.00±0.55 a | 145.04±10.06 abc | 143.04±10.32 ab | 155.47±10.79 abc | 1 403.90±146.20 bc | 1 248.43±139.78 bc |
48 | 0.01±0.00 a | 1.68±0.29 ab | 1.67±0.29 ab | 1.99±0.44 ab | 145.49±16.85 abc | 143.50±17.08 ab | 155.95±18.06 abc | 1 581.01±220.73 ab | 1 425.06±203.38 ab |
60 | 0.01±0.00 a | 1.72±0.30 a | 1.71±0.30 a | 1.80±0.27 abc | 148.51±11.62 ab | 146.71±11.76 ab | 159.19±12.45 ab | 1 662.67±290.38 ab | 1 503.48±278.24 ab |
72 | 0.01±0.00 a | 1.53±0.42 ab | 1.51±0.41 ab | 1.63±0.48 abcd | 159.19±12.45 a | 157.56±12.63 a | 170.64±13.35 a | 1 827.49±342.97 a | 1 656.85±329.62 a |
96 | 0.01±0.00 a | 1.24±0.21 bc | 1.23±0.21 bc | 1.33±0.22 cd | 159.46±17.16 a | 158.13±17.21 a | 170.92±18.40 a | 1 917.07±397.13 a | 1 746.15±393.01 a |
胚根伸出 radicle extension | — | — | — | 0.57±0.29 e | 126.34±8.76 bc | 125.78±9.04 b | 135.43±9.39 bc | 943.79±0.00 de | 808.36±9.39 de |
Table 2
The dynamic changes of each peak areas of Robinia pseudoacacia seeds during its imbibition"
时间/h time | S21 | S22 | S23 | S | |||
---|---|---|---|---|---|---|---|
峰面积 peak area | 比例/% ratio | 峰面积 peak area | 比例/% ratio | 峰面积 peak area | 比例/% ratio | 峰面积 peak area | |
3 | 861.69±105.99 d | 4.61 | 16 349.21±1 083.31 c | 87.51 | 1 470.96±41.45 e | 7.87 | 18 681.86±1 053.72 d |
6 | 952.16±132.63 cd | 3.80 | 22 461.53±2 293.74 b | 89.71 | 1 624.53±134.87 e | 6.49 | 25 038.62±2 026.80 c |
9 | 1 293.73±118.32 a | 4.53 | 24 873.76±943.72 ab | 87.11 | 2 387.94±495.31 de | 8.36 | 28 555.42±780.76 bc |
12 | 1 334.04±157.70 a | 4.33 | 26 275.68±1 325.16 a | 85.36 | 2 939.70±1 017.13 cde | 9.55 | 30 782.72±1 167.48 ab |
24 | 1 200.02±120.33 ab | 3.65 | 27 380.22±922.10 a | 83.37 | 4 254.50±643.03 bc | 12.95 | 32 840.98±311.77 ab |
36 | 1 168.66±131.36 abc | 3.55 | 27 096.3±1 349.5 a | 82.34 | 4 625.10±519.72 bc | 14.06 | 32 907.15±982.71 ab |
48 | 1 068.30±82.43 bcd | 3.18 | 27 654.84±1 402.58 a | 82.26 | 4 873.63±616.09 b | 14.50 | 33 620.18±1 778.84 a |
60 | 1 036.98±103.76 bcd | 3.06 | 28 189.32±1 297.87 a | 83.17 | 4 631.83±598.11 bc | 13.67 | 33 893.59±1 219.24 a |
72 | 970.96±174.74 cd | 2.91 | 27 908.34±1 813.70 ab | 83.66 | 4 448.20±439.62 bc | 13.33 | 33 361.17±2 248.72 a |
96 | 1 003.98±76.92 bcd | 3.09 | 27 388.75±1 961.44 a | 84.38 | 4 029.01±1 027.21 bcd | 12.41 | 32 460.58±2 950.07 ab |
胚根伸出 radicle extension | — | — | 25 008.49±3 307.46 ab | 75.89 | 7 585.00±2 528.27 a | 23.02 | 32 951.90±6 099.44 ab |
[1] | 曹笑皇, 季志平, 贺亮, 等. 不同坡向刺槐林对蜂蜜产量的影响[J]. 西北林学院学报, 2006, 21(6):174-176. |
CAO X H, JI Z P, HE L, et al. Impact of aspect on the locust honey yields[J]. J Northwest For Univ, 2006, 21(6):174-176. DOI: 10.3969/j.issn.1001-7461.2006.06.044.
doi: 10.3969/j.issn.1001-7461.2006.06.044 |
|
[2] | 方芳, 彭祚登, 郭志民, 等. 刺槐种子硬实特性及萌发促进的研究[J]. 中南林业科技大学学报, 2013, 33(7):72-76. |
FANG F, PENG Z D, GUO Z M, et al. Study on seed hardness characteristic and germination promoting of Robinia pseudoacacia seeds[J]. J Central South Univ For Technol, 2013, 33(7):72-76. DOI: 10.14067/j.cnki.1673-923x.2013.07.016.
doi: 10.14067/j.cnki.1673-923x.2013.07.016 |
|
[3] | 邵小龙, 李云飞. 用低场核磁研究烫漂对甜玉米水分布和状态影响[J]. 农业工程学报, 2009, 25(10):302-306. |
SHAO X L, LI Y F. Effects of blanching on water distribution and water status in sweet corn investigated by using MRI and NMR[J]. Trans Chin Soc Agric Eng, 2009, 25(10):302-306. DOI: 10.3969/j.issn.1002-6819.2009.10.054.
doi: 10.3969/j.issn.1002-6819.2009.10.054 |
|
[4] | 张绪坤, 祝树森, 黄俭花, 等. 用低场核磁分析胡萝卜切片干燥过程的内部水分变化[J]. 农业工程学报, 2012, 28(22):282-287. |
ZHANG X K, ZHU S S, HUANG J H, et al. Analysis on internal moisture changes of carrot slices during drying process using low-field NMR[J]. Trans Chin Soc Agric Eng, 2012, 28(22):282-287. DOI: 10.3969/j.issn.1002-6819.2012.22.039.
doi: 10.3969/j.issn.1002-6819.2012.22.039 |
|
[5] | 要世瑾, 牟红梅, 杜光源, 等. 小麦种子吸胀萌发过程的核磁共振检测研究[J]. 农业机械学报, 2015, 46(11):266-274. |
YAO S J, MOU H M, DU G Y, et al. Water imbibition and germination of wheat seed with nuclear magnetic resonance[J]. Trans Chin Soc Agric Mach, 2015, 46(11):266-274. DOI: 10.6041/j.issn.1000-1298.2015.11.036.
doi: 10.6041/j.issn.1000-1298.2015.11.036 |
|
[6] | 范明辉, 范崇东, 王淼. 利用脉冲NMR研究食品体系中的水分性质[J]. 食品与机械, 2004, 20(2):45-48. |
FAN M H, FAN C D, WANG M. Pulse NMR study of water in food system[J]. Food Mach, 2004, 20(2):45-48. DOI: 10.13652/j.issn.1003-5788.2004.02.024.
doi: 10.13652/j.issn.1003-5788.2004.02.024 |
|
[7] | 李然, 李振川, 陈珊珊, 等. 应用低场核磁共振研究绿豆浸泡过程[J]. 食品科学, 2009, 30(15):137-141. |
LI R, LI Z C, CHEN S S, et al. Study of water absorption of mung beans based on low-field nuclear magnetic resonance technology[J]. Food Sci, 2009, 30(15):137-141. DOI: 10.3321/j.issn:1002-6630.2009.15.031.
doi: 10.3321/j.issn:1002-6630.2009.15.031 |
|
[8] | 宋平, 彭宇飞, 王桂红, 等. 玉米种子萌发过程内部水分流动规律的低场核磁共振检测[J]. 农业工程学报, 2018, 34(10):274-281. |
SONG P, PENG Y F, WANG G H, et al. Detection of internal water flow in germinating corn seeds based on low field nuclear magnetic resonance[J]. Trans Chin Soc Agric Eng, 2018, 34(10):274-281. DOI: 10.11975/j.issn.1002-6819.2018.10.035.
doi: 10.11975/j.issn.1002-6819.2018.10.035 |
|
[9] | 牟红梅, 何建强, 邢建军, 等. 小麦灌浆过程籽粒水分变化的核磁共振检测[J]. 农业工程学报, 2016, 32(8):98-104. |
MOU H M, HE J Q, XING J J, et al. Water changes in wheat spike during grain filling stage investigated by nuclear magnetic resonance[J]. Trans Chin Soc Agric Eng, 2016, 32(8):98-104. | |
[10] | 汪楠, 邵小龙, 时小转, 等. 稻谷低温低湿干燥特性与水分迁移分析[J]. 食品工业科技, 2017, 38(5):114-119. |
WANG N, SHAO X L, SHI X Z, et al. Analysis of drying characteristics and moisture migration for paddy rice under low temperatures and low relative humidities[J]. Sci Technol Food Ind, 2017, 38(5):114-119. DOI: 10.13386/j.issn1002-0306.2017.05.013.
doi: 10.13386/j.issn1002-0306.2017.05.013 |
|
[11] | 宋平, 杨涛, 王成, 等. 利用低场核磁共振分析水稻种子浸泡过程中的水分变化[J]. 农业工程学报, 2015, 31(15):279-284. |
SONG P, YANG T, WANG C, et al. Analysis of moisture changes during rice seed soaking process using low-field NMR[J]. Trans Chin Soc Agric Eng, 2015, 31(15):279-284. DOI: 10.11975/j.issn.1002-6819.2015.15.038.
doi: 10.11975/j.issn.1002-6819.2015.15.038 |
|
[12] |
CHALAND B, MARIETTE F, MARCHAL P, et al. 1H nuclear magnetic resonance relaxometric characterization of fat and water states in soft and hard cheese[J]. J Dairy Res, 2000, 67(4):609-618. DOI: 10.1017/s0022029900004398.
doi: 10.1017/s0022029900004398 |
[13] | 侯彩云, 大下诚一, 濑尾康久, 等. 蒸煮过程中稻米水分状态的质子核磁共振谱测定[J]. 农业工程学报, 2001, 17(2):126-131. |
HOU C Y, SEIICHI OSHITA YASUHISA, SEO YOSHINORI KAWAGOE, et al. State of moisture in rice kernel during cooking process by 1H-NMR measurement[J]. Trans Chin Soc Agric Eng, 2001, 17(2):126-131. | |
[14] |
TROUTMAN M Y, MASTIKHIN I V, BALCOM B J, et al. Moisture migration in soft-panned confections during engrossing and aging as observed by magnetic resonance imaging[J]. J Food Eng, 2001, 48(3):257-267. DOI: 10.1016/S0260-8774(00)00167-9.
doi: 10.1016/S0260-8774(00)00167-9 |
[15] | 杨期和, 尹小娟, 叶万辉. 硬实种子休眠的机制和解除方法[J]. 植物学通报, 2006, 41(1):108-118. |
YANG Q H, YIN X J, YE W H. Dormancy mechanism and breaking methods for hard seeds[J]. Chin Bull Bot, 2006, 41(1):108-118. DOI: 10.3969/j.issn.1674-3466.2006.01.014.
doi: 10.3969/j.issn.1674-3466.2006.01.014 |
|
[16] | 陈丽, 代松, 马青江, 等. 合欢种皮结构及其与吸水的关系[J]. 林业科学, 2019, 55(5):46-54. |
CHEN L, DAI S, MA Q J, et al. Structure of seed coat of Albizia julibrissin and its relationship with water uptake[J]. Sci Silvae Sin, 2019, 55(5):46-54. DOI: 10.11707/j.1001-7488.20190506.
doi: 10.11707/j.1001-7488.20190506 |
|
[17] | 郭学民, 肖啸, 梁丽松, 等. 白刺花种子硬实与萌发特性研究[J]. 种子, 2010, 29(12):38-42. |
GUO X M, XIAO X, LIANG L S, et al. Study on the properties of hard and germination of Sophora viciifolia seed[J]. Seed, 2010, 29(12):38-42. DOI: 10.16590/j.cnki.1001-4705.2010.12.079.
doi: 10.16590/j.cnki.1001-4705.2010.12.079 |
|
[18] | 张春平, 何平, 杜丹丹, 等. 决明种子硬实及萌发特性研究[J]. 中草药, 2010, 41(10):1700-1704. |
ZHANG C P, HE P, DU D D, et al. Study on hardness and germination characteristic of Cassia obtusifolia seeds[J]. Chin Tradit Herb Drugs, 2010, 41(10):1700-1704. | |
[19] |
TAKEUCHI S, FUKUOKA M, GOMI Y, et al. An application of magnetic resonance imaging to the real time measurement of the change of moisture profile in a rice grain during boiling[J]. J Food Eng, 1997, 33(1/2):181-192. DOI: 10.1016/S0260-8774(97)00052-6.
doi: 10.1016/S0260-8774(97)00052-6 |
[20] | 宋平, 徐静, 马贺男, 等. 用低场核磁共振检测水稻浸种过程中种子水分的相态及分布特征[J]. 农业工程学报, 2016, 32(6):204-210. |
SONG P, XU J, MA H N, et al. Moisture phase state and distribution characteristics of seed during rice seed soaking process by low field nuclear magnetic resonance[J]. Trans Chin Soc Agric Eng, 2016, 32(6):204-210. DOI: 10.11975/j.issn.1002-6819.2016.06.028.
doi: 10.11975/j.issn.1002-6819.2016.06.028 |
|
[21] | 宣艳, 孙旭, 向义龙, 等. 低场核磁共振技术对香樟种子水分变化的研究[J]. 江苏林业科技, 2018, 45(6):8-11,15. |
XUAN Y, SUN X, XIANG Y L, et al. Analysis of internal moisture change of camphor seeds during drying by low field-NMR[J]. J Jiangsu For Sci Technol, 2018, 45(6):8-11,15. DOI: 10.3969/j.issn.1001-7380.2018.06.002.
doi: 10.3969/j.issn.1001-7380.2018.06.002 |
|
[22] | 付晓记, 唐爱清, 闵华, 等. 花生浸种过程中水分相态和水分迁移动态研究[J]. 中国油料作物学报, 2018, 40(4):552-557. |
FU X J, TANG A Q, MIN H, et al. Analysis on water phase state and transport in process of peanut seed soaking by using low-field nuclear magnetic resonance[J]. Chin J Oil Crop Sci, 2018, 40(4):552-557. DOI: 10.7505/j.issn.1007-9084.2018.04.012.
doi: 10.7505/j.issn.1007-9084.2018.04.012 |
|
[23] |
GARNCZARSKA M, ZALEWSKI T, KEMPKA M. Water uptake and distribution in germinating lupine seeds studied by magnetic resonance imaging and NMR spectroscopy[J]. Physiol Plant, 2010, 130(1):23-32. DOI: 10.1111/j.1399-3054.2007.00883.x.
doi: 10.1111/j.1399-3054.2007.00883.x. |
[1] | GONG Nan, ZU Xin, XIE Zhijun, ZHU Changhong, LI Shuxian. A low-field nuclear magnetic resonance detection of moisture changes in different water phases during the imbibition and stratification process of Cercis chinensis seeds [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(6): 42-50. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||