Genetic differentiation of Bursaphelenchus xylophilus in east China based on single nucleotide polymorphisms (SNP) markers

WANG Qingtong, DING Xiaolei, YE Jianren, SHI Xiufeng

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (4) : 21-28.

PDF(2045 KB)
PDF(2045 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (4) : 21-28. DOI: 10.12302/j.issn.1000-2006.202103026

Genetic differentiation of Bursaphelenchus xylophilus in east China based on single nucleotide polymorphisms (SNP) markers

Author information +
History +

Abstract

【Objective】 Jiangsu, Zhejiang, Anhui and Shandong, these four provinces in east China, are recognized as the initial occurrence of pine wilt disease in China. And east China is also the most suitable growth area for Bursaphelenchus xylophilus. Studying the genetic differentiation of the B. xylophilus population in those regions will provide important basic genetic information to establish a B. xylophilus epidemic source tracing system in China. 【Method】 Samples of B. xylophilus were collected from pine trees affected by pine wilt disease in east China, and strains were isolated and purified. The genomic deoxyribonucleic acid (DNA) of strains was extracted and sequenced. The number and types of single nucleotide polymorphism (SNP) loci and genotypes in each region were analyzed using bioinformatics software. Cluster analysis was used to compare the genetic differentiation among different strains based on SNP markers, while Treemix was used to detect gene penetration routes. 【Result】 A total of 67 B. xylophilus strains were isolated and collected in 60 county-level administrative regions of Anhui (AH), Fujian (FJ), Jiangsu (JS), Jiangxi (JX), Shandong (SD) and Zhejiang Province (ZJ) in East China. All strains were sequenced through the whole genome; genome calling analysis indicated 12 genotypes, of the 67 strains, where six types (i.e., A→G, C→G, C→T, G→A, G→C and T→C) occurred at a higher frequency than others. A total of 6 531 684 SNP loci were obtained and the number of SNP was different between strains. The number of SNP counts, homozygotes, missing SNPs, and private SNPs showed no significant regional differences among the six provinces, and there was no significant correlation with invasion time. Principal component analysis showed that 67 strains of B. xylophilus may be divided into three groups; each group had a specific correlation with a geographic origin. Most strains belonged to group 1, which included all strains from Zhejiang and Jiangxi, as well as most of strains from the other four provinces. Group 2 included 14 strains from Jiangsu, Anhui, Shandong and Fujian, and group 3 included only seven strains from Anhui, Fujian and Shandong provinces. Two gene migration routes detected by Treemix: ① group 2 of Jiangsu to group 1 of Anhui; and ② group 3 of Shandong to group 2 of Anhui. 【Conclusion】 There were abundant SNP loci in B. xylophilus in east China, where the SNP characteristics of different strains were relatively disparate, and there was no clear regularity between SNP diversity and invasion time. Overall, the B. xylophilus strains in east China may be divided into three groups, and there was a specific correlation between different groups and geographic areas. In the area where the 1-AH and 2-AH groups were located, there may have been re-invasion by strains from groups in other areas.

Key words

Bursaphelenchus xylophilus / single nucleotide polymorphism (SNP) / whole-genome resequencing / genetic differentiation / east China region

Cite this article

Download Citations
WANG Qingtong , DING Xiaolei , YE Jianren , et al. Genetic differentiation of Bursaphelenchus xylophilus in east China based on single nucleotide polymorphisms (SNP) markers[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2022, 46(4): 21-28 https://doi.org/10.12302/j.issn.1000-2006.202103026

References

[1]
MAMIYA Y. Pathology of the pine wilt disease caused by Bursaphelenchus xylophilus[J]. Annu Rev Phytopathol, 1983, 21: 201-220. DOI:10.1146/annurev.py.21.090183.001221.
[2]
GRUFFUDD H R, JENKINS T A R, EVANS H F. Using an evapo-transpiration model (ETpN) to predict the risk and expression of symptoms of pine wilt disease (PWD) across Europe[J]. Biol Invasions, 2016, 18(10): 2823-2840. DOI:10.1007/s10530-016-1173-7.
[3]
杨宝君, 贺长洋, 王成法. 国外松材线虫病发生概况[J]. 森林病虫通讯, 1999, 18(5): 40-42.
YANG B J, HE C Y, WANG C F. Occurrence of pine wilt disease abroad[J]. For Pest Dis, 1999, 18(5): 40-42.
[4]
丁晓磊, 张悦, 林司曦, 等. 基于高通量测序技术的松材线虫研究进展[J]. 南京林业大学学报(自然科学版), 2022, 46(4):1-7.
DING X L, ZHANG Y, LIN S X, et al. An overview of high-throughput sequencing techniques applied on Bursaphelenchus xylophilus[J]. J Nanjing For Univ(Nat Sci Ed): 2022, 46(4):1-7.DOI:10.12302/j.issn.1000-2006.202204039.
[5]
徐汝梅, 叶万辉. 生物入侵: 理论与实践[M]. 北京: 科学出版社, 2003: 102-118.
XU R M, YE W H. Biological invasions: theory and practice[M]. Beijing: Science Press, 2003: 102-118.
[6]
陈星, 高子厚. DNA分子标记技术的研究与应用[J]. 分子植物育种, 2019, 17(6), 1970-1977.
CHEN X, GAO Z H. The study and application of DNA molecular marker technique[J]. Mol Plant Breed, 2019, 17(6): 1970-1977. DOI:10.13271/j.mpb.017.001970.
[7]
LANDER E S. The new genomics: global views of biology[J]. Science, 1996, 274(5287): 536-539. DOI:10.1126/science.274.5287.536.
[8]
许家磊, 王宇, 后猛, 等. SNP检测方法的研究进展[J]. 分子植物育种, 2015, 13(2): 475-482.
XU J L, WANG Y, HOU M, et al. Progress on detection methods of SNP[J]. Mol Plant Breed, 2015, 13(2): 475-482. DOI:10.13271/j.mpb.013.000475.
[9]
KANAZIN V, TALBERT H, SEE D, et al. Discovery and assay of single-nucleotide polymorphisms in barley (Hordeum vulgare)[J]. Plant Mol Biol, 2002, 48(5): 529-537. DOI:10.1023/a:1014859031781.
[10]
NASU S, SUZUKI J, OHTA R, et al. Search for and analysis of single nucleotide polymorphisms (SNPs) in rice (Oryza sativa,Oryza rufipogon) and establishment of SNP markers[J]. DNA Res, 2002, 9(5): 163-171. DOI:10.1093/dnares/9.5.163.
[11]
COOPER D N, SMITH B A, COOKE H J, et al. An estimate of unique DNA sequence heterozygosity in the human genome[J]. Hum Genet, 1985, 69(3): 201-205. DOI:10.1007/BF00293024.
[12]
BAI H H, GUO X S, NARISU N, et al. Whole-genome sequencing of 175 Mongolians uncovers population-specific genetic architecture and gene flow throughout North and East Asia[J]. Nat Genet, 2018, 50(12): 1696-1704. DOI:10.1038/s41588-018-0250-5.
[13]
KIM C, YOON U, LEE G, et al. An integrated database to enhance the identification of SNP markers for rice[J]. Bioinformation, 2009, 4(6): 269-270. DOI:10.6026/97320630004269.
[14]
BAI B, ZHAO W M, TANG B X, et al. DoGSD: the dog and wolf genome SNP database[J], Nucleic Acids Res, 2015, 43(D1): D777-D783. DOI:10.1093/nar/gku1174.
[15]
LUO H, ZHAO W, WANG Y, et al. SorGSD: a Sorghum genome SNP database[J]. Biotechnol Biofuels, 2016, 9: 6. DOI:10.1186/s13068-015-0415-8.
[16]
RAVELOMBOLA W S, QIN J, SHI A, et al. Genome-wide association study and genomic selection for soybean chlorophyll content associated with soybean cyst nematode tolerance[J]. BMC Genomics, 2019, 20: 904. DOI:10.1186/s12864-019-6275-z.
[17]
STEVANATO P, TREBBI D, PANELLA L, et al. Identification and validation of a SNP marker linked to the gene HsBvm-1 for nematode resistance in sugar beet[J]. Plant Mol Biol Report, 2015, 33(3): 474-479. DOI:10.1007/s11105-014-0763-8.
[18]
SILVEIRA D L M, MONTECELLI T D N, SILVA G J, et al. SNP haplotypes for soybean resistance to SCN race 1 and 3[J]. Euphytica, 2019, 215(8): 1-14. DOI:10.1007/s10681-019-2465-7.
[19]
FIGUEIREDO J, SIMÕES M J, GOMES P, et al. Assessment of the geographic origins of pinewood nematode isolates via single nucleotide polymorphism in effector genes[J]. PLoS One, 2013, 8(12): e83542. DOI:10.1371/journal.pone.0083542.
[20]
PALOMARES-RIUS J E, TSAI I J, KARIM N, et al. Genome-wide variation in the pinewood nematode Bursaphelenchus xylophilus and its relationship with pathogenic traits[J]. BMC Genomics, 2015, 16: 845. DOI:10.1186/s12864-015-2085-0.
[21]
谢辉. 植物线虫分类学[M]. 合肥: 安徽科学技术出版社, 2000: 186-188.
XIE H. Taxonomy of plant nematodes[M]. Hefei: Anhui Science & Technology Publishing House, 2000: 186-188.
[22]
陈凤毛, 叶建仁, 吴小芹, 等. 松材线虫SCAR标记与检测技术[J]. 林业科学, 2012, 48(3): 88-94.
CHEN F M, YE J R, WU X Q, et al. SCAR marker and detection technique of Bursaphelenchus xylophilus[J]. Sci Silvae Sin, 2012, 48(3): 88-94. DOI:10.11707/j.1001-7488.20120314.
[23]
陈凤毛. 松材线虫SCAR标记与分子检测技术[D]. 南京: 南京林业大学, 2005.
CHEN F M. SCAR marker and molecular detection technique of Bursaphelenchus xylophilus[D]. Nanjing: Nanjing Forestry University, 2005.
[24]
PICKRELL J K, PRITCHARD J K. Inference of population splits and mixtures from genome-wide allele frequency data[J]. PLoS Genet, 2012, 8(11): e1002967. DOI:10.1371/journal.pgen.1002967.
[25]
PURCELL S, NEALE B, TODD-BROWN K, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses[J]. Am J Hum Genet, 2007, 81(3): 559-575. DOI:10.1086/519795.
[26]
谢丙炎, 成新跃, 石娟, 等. 松材线虫入侵种群形成与扩张机制: 国家重点基础研究发展计划“农林危险生物入侵机理与控制基础研究”进展[J]. 中国科学(C辑: 生命科学), 2009, 39(4): 333-341.
XIE B Y, CHENG X Y, SHI J, et al. Formation and expansion mechanism of pine wood nematode invasions: progress of the national key basic research program on “basic research on mechanism and control of dangerous biological invasions in agriculture and forestry”[J]. Sci China (Ser C: Life Sci), 2009, 39(4): 333-341. DOI:10.1360/zc2009-39-4-333.
[27]
潘宏阳, 叶建仁, 吴小芹. 中国松材线虫病空间分布格局[J]. 生态学报, 2009, 29(8): 4325-4331.
PAN H Y, YE J R, WU X Q. Spatial distribution patterns of pine wilt disease in China[J]. Acta Ecol Sin, 2009, 29(8): 4325-4331. DOI:10.3321/j.issn:1000-0933.2009.08.036.
[28]
叶建仁, 黄麟. 松材线虫病病原学研究的几个问题[J]. 中国森林病虫, 2012, 31(5): 13-21, 44.
YE J R, HUANG L. Some aspects of the pathogen of the pine wilt disease[J]. For Pest Dis, 2012, 31(5): 13-21, 44. DOI:10.3969/j.issn.1671-0886.2012.05.004.
[29]
黄金思, 奚晓桐, 丁晓磊, 等. 基于SNP标记的广东省松材线虫种群分化研究[J]. 南京林业大学学报(自然科学版), 2019, 43(6): 25-31.
HUANG J S, XI X T, DING X L, et al. Study on the population differentiation of Bursaphelenchus xylophilus in Guangdong Province by SNP markers[J]. J Nanjing For Univ (Nat Sci Ed), 2019, 43(6): 25-31. DOI:10.3969/j.issn.1000-2006.201903007.
[30]
STONE G N, ATKINSON R J, BROWN G, et al. 分布区扩张的群体遗传学后果: 类型与过程, 以栎瘿蜂为模型系统[J]. 生物多样性, 2002, 10(1): 80-97.
STONE G N, ATKINSON R J, BROWN G, et al. The population genetic consequences of range expansion: a review of pattern and process, and the value of oak gallwasps as a model system[J]. Chin Biodivers, 2002, 10(1): 80-97.DOI:10.17520/biods.2002010.
[31]
黄族豪, 刘迺发. 种群遗传学研究进展[J]. 安徽农业科学, 2008, 36(31): 13490-13491, 13499.
HUANG Z H, LIU N F. Advances in population genetics[J]. J Anhui Agric Sci, 2008, 36(31): 13490-13491, 13499. DOI:10.3969/j.issn.0517-6611.2008.31.007.
[32]
CARDOSO J M S, FONSECA L, ABRANTES I. Genetic diversity of ITS sequences of Bursaphelenchus xylophilus[J]. Genet Mol Res, 2012, 11(4): 4508-4515, DOI:10.4238/2012.October.15.1.
[33]
METGE K, BURGERMEISTER W. Intraspecific variation in isolates of Bursaphelenchus xylophilus (Nematoda: Aphelenchoididae) revealed by ISSR and RAPD fingerprints[J]. J Plant Dis Prot, 2006, 113(6): 275-282. DOI:10.1007/BF03356193.
[34]
理永霞, 张星耀. 松材线虫入侵扩张趋势分析[J]. 中国森林病虫, 2018, 37(5): 1-4.
LI Y X, ZHANG X Y. Analysis on the trend of invasion and expansion of Bursaphelenchus xylophilus[J]. For Pest Dis, 2018, 37(5): 1-4. DOI:10.3969/j.issn.1671-0886.2018.05.001.
[35]
CHENG X Y, CHENG F X, XU R M, et al. Genetic variation in the invasive process of Bursaphelenchus xylophilus (Aphelenchida: Aphelenchoididae) and its possible spread routes in China[J]. Heredity (Edinb), 2008, 100(4): 356-365. DOI:10.1038/sj.hdy.6801082.
PDF(2045 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/