Effects of the four genes expressions and photosynthetic parameters on seedlings growth of different birch clones

NA Xiaoying, LIU Gang, LIU Guifeng, WANG Xiuwei

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (2) : 88-94.

PDF(4466 KB)
PDF(4466 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (2) : 88-94. DOI: 10.12302/j.issn.1000-2006.202103037

Effects of the four genes expressions and photosynthetic parameters on seedlings growth of different birch clones

Author information +
History +

Abstract

【Objective】 We analyzed the relationship among RBCS1A, RBCS3B, GO and RCA gene expression in one-year-old white birch clone seedlings and photosynthetic rate, transpiration rate, stomatal conductance, instantaneous water use efficiency, intercellular CO2 concentration, carboxylation efficiency, seedling height, and ground diameter of seedlings. Moreover, the effects of gene expression and photosynthetic parameters on the initial growth of birch clone seedlings were preliminarily explored. 【Method】 Six mature trees in a diallel cross progeny forest of white birch were cultured and propagated as six clones, and growth, photosynthetic parameters and expression of four photosynthesis-related genes in one-year-old white birch clone seedlings were determined and analyzed. 【Result】 There were significant differences in growth, photosynthetic parameters, and relative gene expression in seedlings of six different genotypes of white birch clones (P < 0.05). A significant correlation between photosynthetic parameters was observed, and the net photosynthetic rate was significantly positively correlated with instantaneous water use efficiency, transpiration rates, stomatal conductance, and carboxylation efficiency (P < 0.05); the relative expression of RBCS1A was significantly positively correlated with RBCS3B. The relative expression of RBCS1A was significantly positively correlated with RCA, and the relative expression of the GO gene was significantly negatively correlated with RCA (P < 0.05). A significant correlation between the relative gene expression and the plants’ transpiration rate, net photosynthetic rate, instantaneous water use efficiency, and stomatal conductance was observed (P < 0.05); however, the difference between the relative gene expression and photosynthetic parameters was not significantly correlated with the plant height and ground diameter (P < 0.05). 【Conclusion】 The expression levels of four genes and six photosynthetic parameters of different one-year-old white birch clone seedlings were significantly different and showed strong correlations, however, the correlation between the seedling height and ground diameter was not significant. This showed that in the early stage of birch seedling growth, the expression of the four examined genes and six photosynthetic parameters did not significantly affect the growth.

Key words

Betula platyphylla Suk. clone / seedling / growth / gene expression / photosynthetic parameters

Cite this article

Download Citations
NA Xiaoying , LIU Gang , LIU Guifeng , et al. Effects of the four genes expressions and photosynthetic parameters on seedlings growth of different birch clones[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2022, 46(2): 88-94 https://doi.org/10.12302/j.issn.1000-2006.202103037

References

[1]
张志翔. 树木学[M]. 北京: 中国林业出版社, 2008.
ZHANG Z X. Dendrology[M]. Beijing: China Forestry Publishing House, 2008.
[2]
PETERHANSEL C, OFFERMANN S. Re-engineering of carbon fixation in plants-challenges for plant biotechnology to improve yields in a high-CO2 world[J]. Curr Opin Biotechnol, 2012, 23(2):204-208. DOI: 10.1016/j.copbio.2011.12.013.
[3]
ANDRALOJC P J, CARMO-SILVA E, DEGEN G E, et al. Increa-sing metabolic potential:C-fixation[J]. Essays Biochem, 2018, 62(1):109-118. DOI: 10.1042/EBC20170014.
[4]
王琪, 徐程扬. 氮磷对植物光合作用及碳分配的影响[J]. 山东林业科技, 2005, 35(5):59-62.
WANG Q, XU C Y. Affects of nitrogen and phosphorus on plant leaf photosynthesis and carbon partitioning[J]. J Shandong For Sci Technol, 2005, 35(5):59-62. DOI: 10.3969/j.issn.1002-2724.2005.05.040.
[5]
SHARWOOD R E. Engineering chloroplasts to improve Rubisco catalysis:prospects for translating improvements into food and fiber crops[J]. New Phytol, 2017, 213(2):494-510. DOI: 10.1111/nph.14351.
[6]
GALMÉS J, CAPÓ-BAUCÀ S, NIINEMETS Ü, et al. Potential improvement of photosynthetic CO2 assimilation in crops by exploiting the natural variation in the temperature response of Rubisco catalytic traits[J]. Curr Opin Plant Biol, 2019, 49:60-67. DOI: 10.1016/j.pbi.2019.05.002.
[7]
全光华, 刘锴栋. Rubisco的研究进展[J]. 安徽农业科学, 2011, 39(21):12652,12746.
QUAN G H, LIU K D. The research progress of Rubisco[J]. J Anhui Agric Sci, 2011, 39(21):12652,12746. DOI: 10.13989/j.cnki.0517-6611.2011.21.013.
[8]
EVANS J R. Photosynthesis and nitrogen relationships in leaves of C3 plants[J]. Oecologia, 1989, 78(1):9-19. DOI: 10.1007/BF00377192.
[9]
MAKINO A, SAKASHITA H, HIDEMA J, et al. Distinctive responses of ribulose-1,5-bisphosphate carboxylase and carbonic anhydrase in wheat leaves to nitrogen nutrition and their possible relationships to CO2-transfer resistance[J]. Plant Physiol, 1992, 100(4):1737-1743. DOI: 10.1104/pp.100.4.1737.
[10]
许大全. 光合作用学[M]. 北京: 科学出版社, 2013.
XU D Q. Photosynthesis[M]. Beijing: Science Press, 2013.
[11]
EVANS J R. The relationship between carbon-dioxide-limited photosynthetic rate and ribulose-1,5-bisphosphate-carboxylase content in two nuclear-cytoplasm substitution lines of wheat,and the coordination of ribulose-bisphosphate-carboxylation and electron-transport capacities[J]. Planta, 1986, 167(3):351-358. DOI: 10.1007/BF00391338.
[12]
MAKINO A, MAE T, OHIRA K. Differences between wheat and rice in the enzymic properties of ribulose-1,5-bisphosphate carboxylase/oxygenase and the relationship to photosynthetic gas exchange[J]. Planta, 1988, 174(1):30-38. DOI: 10.1007/BF00394870.
[13]
IZUMI M, TSUNODA H, SUZUKI Y, et al. RBCS1A and RBCS3B,two major members within the Arabidopsis RBCS multigene family,function to yield sufficient Rubisco content for leaf photosynthetic capacity[J]. J Exp Bot, 2012, 63(5):2159-2170. DOI: 10.1093/jxb/err434.
[14]
韩鹰, 陈刚, 王忠. Rubisco活化酶的研究进展[J]. 植物学通报, 2000(4):306-331.
HAN Y, CHEN G, WANG Z. The progresses of studies on Rubisco activase[J]. Chin Bull Bot, 2000(4):306-331.
[15]
FOYER C H, BLOOM A J, QUEVAL G, et al. Photorespiratory metabolism:genes,mutants,energetics,and redox signaling[J]. Annu Rev Plant Biol, 2009, 60:455-484. DOI: 10.1146/annurev.arplant.043008.091948.
[16]
吴廷娟, 田梦平, 谢小龙. 不同地黄品种光合特性的比较研究[J]. 世界科学技术-中医药现代化, 2020, 22(8):2899-2906.
WU T J, TIAN M P, XIE X L. Comparison of photosynthetic cha-racteristics of different germplasm Rehmannia glutinosa[J]. Mod Tradit Chin Med Mater Med World Sci Technol, 2020, 22(8):2899-2906. DOI: 10.11842/wst.20190425002.
[17]
李荣生, 许煌灿, 尹光天, 等. 植物水分利用效率的研究进展[J]. 林业科学研究, 2003, 16(3):366-371.
LI R S, XU H C, YIN G T, et al. Advances in the water use efficiency of plant[J]. For Res, 2003, 16(3):366-371. DOI: 10.3321/j.issn:1001-1498.2003.03.020.
[18]
熊伟, 王彦辉, 于澎涛. 树木水分利用效率研究综述[J]. 生态学杂志, 2005, 24(4):417-421.
XIONG W, WANG Y H, YU P T. A review on the study of water use efficiency of tree species[J]. Chin J Ecol, 2005, 24(4):417-421.
[19]
ANDERSSON I, BACKLUND A. Structure and function of Rubisco[J]. Plant Physiol Biochem, 2008, 46(3):275-291. DOI: 10.1016/j.plaphy.2008.01.001.
[20]
薛元夏, 邓西平, 杨淑慎. 参与逆境应答的小麦RBCS11基因启动子功能分析[J]. 农业生物技术学报, 2016, 24(7):946-956.
XUE Y X, DENG X P, YANG S S. Promoter functional analysis of RBCS11 gene participate in the abiotic stress responsible in wheat (Triticum aestivum)[J]. J Agric Biotechnol, 2016, 24(7):946-956. DOI: 10.3969/j.issn.1674-7968.2016.07.002.
[21]
何亚飞, 李霞, 谢寅峰. Rubisco与Rubisco活化酶的分子机理研究进展[J]. 分子植物育种, 2017, 15(8):3295-3301.
HE Y F, LI X, XIE Y F. Advances in molecular mechanisms of Rubisco and Rubisco activase[J]. Mol Plant Breed, 2017, 15(8):3295-3301. DOI: 10.13271/j.mpb.015.003295.
[22]
刘玉洁. 本生烟乙醇酸氧化酶GOX的结构与功能研究[D]. 北京: 中国农业大学, 2019.
LIU Y J. Structural and functional studies of glycolate oxidase(GOX) from Nicotiana benthamiana[D]. Beijing: China Agricultural University, 2019.
[23]
李莹, 阚国仕, 孙文丽, 等. 大豆乙醇酸氧化酶基因的克隆、表达和酶学活性分析[J]. 湖北农业科学, 2011, 50(1):172-176.
LI Y, KAN G S, SUN W L, et al. Cloning and expression of soybean glycolate oxidase gene in Escherichia coli and enzyme activity analysis[J]. Hubei Agric Sci, 2011, 50(1):172-176. DOI: 10.14088/j.cnki.issn0439-8114.2011.01.039.
[24]
周云龙. 植物生物学[M]. 北京: 高等教育出版社, 1999.
ZHOU Y L. Plant biology[M]. Beijing: Higher Education Press, 1999.
[25]
陈根云, 俞冠路, 陈悦, 等. 光合作用对光和二氧化碳响应的观测方法探讨[J]. 植物生理与分子生物学学报, 2006, 32(6):691-696.
CHEN G Y, YU G L, CHEN Y, et al. Exploring the observation methods of photosynthetic responses to light and carbon dioxide[J]. J Plant Physiol Mol Biol, 2006, 32(6):691-696. DOI: 10.3321/j.issn:1671-3877.2006.06.012.
[26]
黄国伟, 李振芳, 申伟, 等. 紫薇优良无性系生长和光合特征分析[J]. 中国农学通报, 2014, 30(25):38-42.
HUANG G W, LI Z F, SHEN W, et al. Analysis of the growth and photosynthetic characteristics of the superior clones in Lagerstroemia indica[J]. Chin Agric Sci Bull, 2014, 30(25):38-42.
[27]
赵思思, 刘兴菊, 王晓叶, 等. 黑榆不同无性系苗期表型性状及光合特征的差异性比较[J]. 河北林果研究, 2017, 32(2):118-123.
ZHAO S S, LIU X J, WANG X Y, et al. Comparison of phenotypic traits and photosynthetic characteristics of different clones of Ulmus pumila at seedling stage[J]. Hebei J For Orchard Res, 2017, 32(2):118-123. DOI: 10.13320/j.cnki.hjfor.2017.0022.
PDF(4466 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/