Maturation processes and the dynamics of oil and saponin in Sapindus mukorossi

ZHENG Yulin, LIU Jiming, SHI Shuanglong, JIA Liming, WENG Xuehuang, LUO Shuijing, SHENG Kezhai

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2021, Vol. 45 ›› Issue (4) : 76-82.

PDF(2096 KB)
PDF(2096 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2021, Vol. 45 ›› Issue (4) : 76-82. DOI: 10.12302/j.issn.1000-2006.202103047

Maturation processes and the dynamics of oil and saponin in Sapindus mukorossi

Author information +
History +

Abstract

【Objective】Soapberry (Sapindus mukorossi) is an important raw material species for biochemical, biomass energy industries. In recent years, China’s soapberry industry has seen booming growth. The fruiting period of soapberry is several months long and there is no clear harvesting period or method to determine the harvesting time during production. In this study, we conducted observations of fruit growth and development dynamics, as well as dynamic changes in the contents of inclusions, to clearly determine the harvesting time of soapberry fruits during production.【Method】Five eight-year-old living soapberry trees with medium growth and good flowering, and fruit set were selected. Three fruit sequences were randomly chosen from each tree every four days from the end of the fruit expansion period to the fruit abscission period. The ten phenotypic indicators, seed kernel oil content, mass of single kernel oil, pericarp saponin content, mass of single pericarp saponin and water content were determined.【Result】① The change in fruit color from green to golden yellow occurred at the end of September, followed by a water loss in the first half of October, along with wrinkling of the pericarp surface. A 7.95% decrease in the transverse diameter and a 10.71% decrease in the lateral diameter of the fruit were also observed. ② The seed kernels were small and green from the end of August to the beginning of September; these then grew gradually before changing from green to yellow around September 20 and completely changed to yellow at the end of September. The transverse diameter, longitudinal diameter and lateral diameter of the seeds decreased significantly in early October, with the transverse diameter decreasing by 10.81%, the longitudinal diameter by 4.87%, and the lateral diameter by 8.96%. ③ The dry mass of the fruit and pericarp showed the same trend, both rising until October 15 and then fluctuating slightly. We innovatively found that the dry mass of seeds decreased when the se-cond significant rise in pericarp dry mass occurred. The fruits finished drying in mid-October. ④ The content of single kernel oil was higher in mid-September and thereafter, whereas the content of single pericarp saponin was higher in early and mid-October.【Conclusion】 The accumulation of saponins in the peel and the oil of the seed kernels was the highest in early October, and the best fruit harvesting periods for peel saponin and the oil of single seed kernels were in early and mid-October. Judging from the fruit’s appearance, the optimum fruit harvesting period was within 20 days after the fruit completely turned golden yellow and the peel started to wrinkle in production.

Key words

Sapindus mukorossi (soapberry) / fruit / saponin / inclusion / energy tree

Cite this article

Download Citations
ZHENG Yulin , LIU Jiming , SHI Shuanglong , et al . Maturation processes and the dynamics of oil and saponin in Sapindus mukorossi[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2021, 45(4): 76-82 https://doi.org/10.12302/j.issn.1000-2006.202103047

References

[1]
中国植物志编辑委员会. 中国植物志: 四十七卷( 第一分册) 无患子科清风藤科[M]. 北京: 科学出版社, 1998: 15.
[2]
刘济铭, 陈仲, 孙操稳, 等. 无患子属种质资源种实性状变异及综合评价[J]. 林业科学, 2019, 55(6):44-54.
LIU J M, CHEN Z, SUN C W, et al. Variation in fruit and seed properties and comprehensive assessment of germplasm resources of the genus Sapindus[J]. Sci Silvae Sin, 2019, 55(6):44-54.DOI: 10.11707/j.1001-7488.20190606.
[3]
CHEN C C, NIEN C J, CHEN L G, et al. Effects of Sapindus mukorossi seed oil on skin wound healing:in vivo and in vitro testing[J]. Int J Mol Sci, 2019, 20(17):4178.DOI: 10.3390/ijms20102579.
[4]
卫星杓, 戴腾飞, 刘诗琦, 等. 施肥对无患子叶片养分动态及产量的影响[J]. 南京林业大学学报(自然科学版), 2018, 42(5):17-24.
WEI X B, DAI T F, LIU S Q, et al. Effects of formula fertilization on leaf nutrient dynamics and yield of Sapindus mukorossi Gaertn[J]. Nanjing For Univ (Nat Sci Ed), 2018, 42(5):17-24.DOI: 10.3969/j.issn.1000-2006.201803015.
[5]
张赟齐, 高世轮, 卫星杓, 等. 光合模型对无患子叶片光合响应参数计算结果的影响[J]. 北京林业大学学报, 2019, 41(4):32-40.
ZHANG Y Q, GAO S L, WEI X B, et al. Effects of photosynthetic models on the calculation results of photosynthetic response parameters in Sapindus mukorossi leaves[J]. Beijing For Univ, 2019, 41(4):32-40.DOI: 10.13332/j.1000-1522.20180163.
[6]
贾黎明, 孙操稳. 生物柴油树种无患子研究进展[J]. 中国农业大学学报, 2012, 17(6):191-196.
JIA L M, SUN C W. Research progress of biodiesel tree Sapindus mukorossi[J]. China Agric Univ, 2012, 17(6):191-196.
[7]
徐圆圆, 贾黎明, 陈仲, 等. 无患子三萜皂苷研究进展[J]. 化学通报, 2018, 81(12):1078-1088.
XU Y Y, JIA L M, CHEN Z, et al. Advances on triterpenoid saponin of Sapindus mukorossi[J]. Chemistry, 2018, 81(12):1078-1088.DOI: 10.14159/j.cnki.0441-3776.2018.12.003.
[8]
高媛, 贾黎明, 苏淑钗, 等. 无患子物候及开花结果特性[J]. 东北林业大学学报, 2015, 43(6):34-40,123.
GAO Y, JIA L M, SU S C, et al. Phenology and blossom-fruiting characteristics of Sapindus mukorossi[J]. Northeast For Univ, 2015, 43(6):34-40,123.DOI: 10.13759/j.cnki.dlxb.20150522.062.
[9]
高媛. 无患子树体高光效构型与源库营养的调控研究[D]. 北京:北京林业大学, 2020.
GAO Y. The research about regulation on high-light efficiency canopy architecture and source-sink nutrition of Sapindus mukorossi Gaertn[D]. Beijing:Beijing Forestry University, 2020.
[10]
ZHAO G C, GAO Y H, GAO S L, et al. The phenological growth stages of Sapindus mukorossi according to BBCH scale[J]. Forests, 2019, 10(6):462.DOI: 10.3390/f10060462.
[11]
范辉华, 汤行昊, 姚湘明, 等. 不同采果期对无患子主要经济性状的影响[J]. 河北林业科技, 2015(2):9-11.
FAN H H, TANG X H, YAO X M, et al. The influence of different fruiting stages on the main economic characters of Sapindus mukorossi[J]. Hebei For Sci Technol, 2015(2):9-11.DOI: 10.3969/j.issn.1002-3356.2015.02.004.
[12]
刁松锋. 无患子花果性状多样性及果实发育规律研究[D]. 北京:中国林业科学研究院, 2014.
DIAO S F. Research into genetic diversity of flower and fruit characteristics and rhythm of fruit development of Sapindus mukorossi Gaertn[D]. Beijing:Chinese Academy of Forestry, 2014.
[13]
邵文豪, 刁松锋, 董汝湘, 等. 无患子果实发育动态及内含物含量变化[J]. 林业科学研究, 2014, 27(5):697-701.
SHAO W H, DIAO S F, DONG R X, et al. Dynamic changes of fruit development and pulp inclusion of Sapindus mukorossi[J]. For Res, 2014, 27(5):697-701.DOI: 10.13275/j.cnki.lykxyj.2014.05.020.
[14]
ARGENTA L C, DO AMARANTE C V T, BETINELLI K S, et al. Comparison of fruit attributes of ‘Fuji’ apple strains at harvest and after storage[J]. Sci Hortic, 2020, 272:109585.DOI: 10.1016/j.scienta.2020.109585.
[15]
吴彬彬, 饶景萍, 李百云, 等. 采收期对猕猴桃果实品质及其耐贮性的影响[J]. 西北植物学报, 2008(4):4788-4792.
WU B B, RAO J P, LI B Y, et al. Effect of harvest date on fruit quality and storage duration of kiwifruit[J]. Acta Bot Boreali-Occidentalia Sin, 2008(4):4788-4792.
[16]
陈仁伟, 张晓煜, 杨豫, 等. 贺兰山东麓砾石葡萄园赤霞珠最佳采收期的确定[J]. 中国农业气象, 2020, 41(9):564-574.
CHEN R W, ZHANG X Y, YANG Y, et al. Determination of the optimal harvest period for the grape variety cabernet sauvignon in gravel vineyard at the eastern foothills of Helan Mountain[J]. Chin J Agrometeorology, 2020, 41(9):564-574.DOI: 10.3969/j.issn.1000-6362.2020.09.003.
[17]
ONEY-MONTALVO J E, AVILÉS-BETANZOS K A, DE JESÚS RAMÍREZ-RIVERA E, et al. Polyphenols content in Capsicum chinense fruits at different harvest times and their correlation with the antioxidant activity[J]. Plants, 2020, 9(10):1394.DOI: 10.3390/plants9101394.
[18]
韩卫娟, 李加茹, 梁玉琴, 等. 柿果实和叶片中可溶性单宁含量的年变化[J]. 南京林业大学学报(自然科学版), 2015, 39(6):61-66.
HAN W J, LI J R, LIANG Y Q, et al. Annual variation of soluble tannin in the fruits and leaves of persimmon[J]. Nanjing For Univ (Nat Sci Ed), 2015, 39(6):61-66.DOI: 10.3969/j.issn.1000-2006.2015.06.012.
[19]
黄展文, 王颖, 李明娟, 等. 采收成熟度对龙滩珍珠李果实品质的影响[J]. 食品与发酵工业, 2021, 47(7):203-210.
HUANG Z W, WANG Y, LI M J, et al. Effect of harvest maturity on the quality of ‘Longtan’ pearl plum[J]. Food Ferment Ind, 2021, 47(7):203-210.DOI: 10.13995/j.cnki.11-1802/ts.025487.
[20]
KALKISIM O, TURAN A, OKCU Z, et al. Evaluation of the effect of different harvest time on the fruit quality of fosa nut[J]. Erwerbs-Obstbau, 2016, 58(2):89-92.DOI: 10.1007/s10341-015-0259-1.
[21]
刘辉军, 魏超宇, 韩文, 等. 基于全卷积神经网络的黄花梨采收期可见-近红外光谱检测方法[J]. 光谱学与光谱分析, 2020, 40(9):2932-2936.
LIU H J, WEI C Y, HAN W, et al. Determination of Huanghua pear’s harvest time based on convolutional neural networks by visible-near infrared spectroscopy[J]. Spectrosc Spectr Anal, 2020, 40(9):2932-2936.
[22]
NARANJO-TORRES J, MORA M, HERNÁNDEZ-GARCÍA R, et al. A review of convolutional neural network applied to fruit image processing[J]. Appl Sci, 2020, 10(10):3443.DOI: 10.3390/app10103443.
[23]
刘俊涛, 仲静, 刘济铭, 等. 无患子初果期人工林土壤和叶片C、N、P化学计量特征[J]. 南京林业大学学报(自然科学版), 2021, 45(4):67-75.
LIU J T, ZHOGN J, LIU J M, et al. Stoichiometric characteristics of soil and leaf in Sapindus mukorossi plantation at early fruiting stage[ J]. J Nanjing For Univ (Nat Sci Ed), 2021, 45(4):67-75.DOI: 10.12302/ j.issn.1000-2006.202104011.
[24]
赫文琦, 魏松坡, 贾黎明. 无患子皂苷对3种植物病原菌的抑菌活性[J]. 东北林业大学学报, 2018, 46(5):96-100.
HE W Q, WEI S P, JIA L M. Bacteriostasic activity of the soapnut saponin to plant pathogen[J]. Northeast For Univ, 2018, 46(5):96-100.DOI: 10.13759/j.cnki.dlxb.2018.05.020.
[25]
袁振, 陈美谕, 贾黎明, 等. 太行山片麻岩地区微地形土层厚度特征及其植被生长阈值[J]. 林业科学, 2018, 54(10):156-163.
YUAN Z, CHEN M Y, JIA L M, et al. Difference of soil thickness among micro-topographies and their thresholds for vegetation growth in gneiss area of Taihang Mountains[J]. Sci Silvae Sin, 2018, 54(10):156-163.
[26]
HINKLEY D V, HINKLEY E A. Inference about the change-point in a sequence of binomial variables[J]. Biometrika, 1970, 57(3):477-488.DOI: 10.1093/biomet/57.3.477.
[27]
芮雪. 无患子种子形态结构与内含物研究[D]. 北京:北京林业大学, 2020.
RUI X. Study on the Sapindus structure and inclusion of seedless seeds[D]. Beijing:Beijing Forestry University, 2020.

RIGHTS & PERMISSIONS

Copyright reserved © 2021
PDF(2096 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/