Stoichiometric characteristics of C, N, P of Taxus chinensis var. mairei plantation needles

CHEN Li, LIU Chenggong, QIAN Yingying, TANG Xiaodie, WANG Shengshu, LI Zhidong, LI Yan, CUI Jun

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2021, Vol. 45 ›› Issue (5) : 53-61.

PDF(1615 KB)
PDF(1615 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2021, Vol. 45 ›› Issue (5) : 53-61. DOI: 10.12302/j.issn.1000-2006.202103051

Stoichiometric characteristics of C, N, P of Taxus chinensis var. mairei plantation needles

Author information +
History +

Abstract

【Objective】 The nutrient ecological stoichiometry and nutrient reabsorption characteristics of Taxus chinensis var. mairei needles were studied to reveal its nutrient restriction pattern and nutrient efficient utilization strategy, thereby providing a theoretical basis for its high-quality afforestation and plantation cultivation 【Method】 The nutrient contents, ecological stoichiometric ratio, nutrient reabsorption efficiency and their relationships were analyzed by measuring the contents of carbon (C), nitrogen (N), and phosphorus (P) and their stoichiometric characteristics in needles of 9-year-old T. chinensis var. mairei plantations at different growth stages. 【Result】 The results showed that the average C, N and P contents of T. chinensis var. mairei plantation needles were 479.67, 22.52 and 2.21 g/kg, respectively. The C/N mass ratio (C:N), C/P mass ratio (C:P), and N/P mass ratio (N:P) were 21.74, 226.25 and 10.55, respectively. A significantly positive correlation between N, P and C existed. Similarly, P content was significantly positively correlated with C content. The C content, which was stable in the needles, had a lower coefficient of variation (3.09%), and P (22.43%) content had higher variability than that of N (15.34%). During the growing season (from June to November), the contents of C and P first rose slightly, and decreased dramatically,both peaked in August and kept until September. The C and N contents reached the lowest in October and November, respectively. The P content increased obviously first, then declined greatly,and peaked in September,much higher than those in other months. Changes in C:N and N:P were stabler than those in C:P that relied on P content. The nitrogen reabsorption efficiency (NRE) and phosphorus reabsorption efficiency (PRE) were 19.33% and 22.16%, respectively. The PRE was negatively correlated with P content and C:P in the senescent needles, but positively correlated with N:P. 【Conclusion】 In the study area, needles of 9-year-old T. chinensis var. mairei plantations had a good C storage capacity and nutrient resource competitiveness, and the nutrients were retained long time in needles because of the low efficiency of N and P reabsorption. Therefore, growth and development of T. chinensis var. mairei plantations was not hindered by N and P.

Key words

Taxus chinensis var. mairei plantation / needle nutrient elements / stoichiometry characteristics / nutrient reabsorption efficiency

Cite this article

Download Citations
CHEN Li , LIU Chenggong , QIAN Yingying , et al . Stoichiometric characteristics of C, N, P of Taxus chinensis var. mairei plantation needles[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2021, 45(5): 53-61 https://doi.org/10.12302/j.issn.1000-2006.202103051

References

[1]
ÅGREN G I. Stoichiometry and nutrition of plant growth in natural communities[J]. Annu Rev Ecol, Evol, Syst, 2008, 39(1):152-170. DOI: 10.1146/ANNUREV.ECOLSYS.39.110707.173515.
[2]
GÜSEWELL S. N:P ratios in terrestrial plants: variation and functional significance[J]. New Phytol, 2004, 164(2):243-266. DOI: 10.1111/j.1469-8137.2004.01192.x.
[3]
TANG Z Y, XU W T, ZHOU G Y, et al. Patterns of plant carbon, nitrogen, and phosphorus concentration in relation to productivity in China’s terrestrial ecosystems[J]. PNAS, 2018, 115(26):E6095-E6096. DOI: 10.1073/pnas.1808126115.
[4]
ELSER J J, BRACKEN M E S, CLELAND E E, et al. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems[J]. Ecol Lett, 2007, 10(12):1135-1142. DOI: 10.1111/j.1461-0248.2007.01113.x.
[5]
REICH P B. Global biogeography of plant chemistry: filling in the blanks[J]. New Phytol, 2005, 168(2):263-266. DOI: 10.1111/j.1469-8137.2005.01562.x.
[6]
YANG Y, LIU B R, AN S S. Ecological stoichiometry in leaves, roots, litters and soil among different plant communities in a desertified region of northern China[J]. CATENA, 2018, 166:328-338. DOI: 10.1016/j.catena.2018.04.018.
[7]
胡小燕, 段爱国, 张建国, 等. 广西大青山杉木人工林碳氮磷生态化学计量特征[J]. 生态学报, 2020, 40(4):1207-1218.
HU X Y, DUAN A G, ZHANG J G, et al. Stoichiometry of carbon, nitrogen, and phosphorus of Chinese fir plantations in Daqing Mountain, Guangxi[J]. Acta Ecol Sin, 2020, 40(4):1207-1218. DOI: 10.5846/stxb201812192754.
[8]
勒佳佳, 苏原, 罗艳, 等. 围封对天山高寒草原4种植物叶片和土壤化学计量学特征的影响[J]. 生态学报, 2020, 40(5):1621-1628.
LE J J, SU Y, LUO Y, et al. Effects of enclosure on leaves of four plants and soil stoichiometry in an alpine grassland of Tianshan Mountains[J]. Acta Ecol Sin, 2020, 40(5):1621-1628. DOI: 10.5846/stxb201901130107.
[9]
邓健, 种玉洁, 贾小敏, 等. 黄土高原子午岭林区典型树种叶片N、P再吸收特征[J]. 生态学报, 2020, 40(11):3698-3705.
DENG J, CHONG Y J, JIA X M, et al. Leaf N and P resorption characteristics of typical tree species in the Ziwuling forest area on Loess Plateau[J]. Acta Ecol Sin, 2020, 40(11):3698-3705. DOI: 10.5846/stxb201906201294.
[10]
AI Z M, HE L R, XIN Q, et al. Slope aspect affects the non-structural carbohydrates and C:N:P stoichiometry of Artemisia sacrorum on the Loess Plateau in China[J]. Catena, 2017, 152:9-17. DOI: 10.1016/j.catena.2016.12.024.
[11]
RONG Q Q, LIU J T, CAI Y P, et al. Leaf carbon, nitrogen and phosphorus stoichiometry of Tamarix chinensis Lour. in the Laizhou Bay coastal wetland, China[J]. Ecol Eng, 2015, 76:57-65. DOI: 10.1016/j.ecoleng.2014.03.002.
[12]
SARDANS J, ALONSO R, CARNICER J, et al. Factors influencing the foliar elemental composition and stoichiometry in forest trees in Spain[J]. Perspect Plant Ecol Evol Syst, 2016, 18:52-69. DOI: 10.1016/j.ppees.2016.01.001.
[13]
KILLINGBECK K T. The terminological jungle revisited: making a case for use of the term resorption[J]. Oikos, 1986, 46(2):263-264. DOI: 10.2307/3565477.
[14]
罗芊芊, 楚秀丽, 李峰卿, 等. 5年生南方红豆杉生长和分枝性状家系变异与选择[J]. 林业科学研究, 2020, 33(1):136-143.
LUO Q Q, CHU X L, LI F Q, et al. Family variation and selection of growth and branching traits of 5-year-old Taxus wallichiana var. mairei[J]. For Res, 2020, 33(1):136-143. DOI: 10.13275/j.cnki.lykxyj.2020.01.018.
[15]
欧建德, 吴志庄. 幼龄南方红豆杉人工林树冠形态特征与生长形质通径分析[J]. 南京林业大学学报(自然科学版), 2019, 43(4):185-191.
OU J D, WU Z Z. Path analysis between canopymorphological characteristics and growth form quality of Taxus chinensis var. mairei plantation at young age[J]. J Nanjing For Univ (Nat Sci Ed), 2019, 43(4):185-191. DOI: 10.3969/j.issn.1000-2006.201805011.
[16]
李先琨, 向悟生, 苏宗明. 南方红豆杉无性系种群结构和动态研究[J]. 应用生态学报, 2004, 15(2):177-180.
LI X K, XIANG W S, SU Z M. Structure and dynamics of Taxus chinensis var. mairei clonal population[J]. Chin J Appl Ecol, 2004, 15(2):177-180. DOI: 10.13287/j.1001-9332.2004.0042.
[17]
费永俊, 龚秀红. 南方红豆杉表型多样性及变异[J]. 湖北农学院学报, 2001, 21(4):310-313.
FEI Y J, GONG X H. Phenotypic diversity and variation of Taxus chinensis var. mairei[J]. J Hubei Agric Coll, 2001, 21(4):310-313.
[18]
POORTER L, BONGERS F. Leaf traits are good predictors of plant performance across 53 rain forest species[J]. Ecology, 2006, 87(7):1733-1743. DOI: 10.1890/0012-9658(2006)87[1733:ltagpo]2.0.CO;2.
[19]
ELSER J J, FAGAN W F, DENNO R F, et al. Nutritional constraintsin terrestrial and freshwater food webs[J]. Nature, 2000, 408(6812):578-580. DOI: 10.1038/35046058.
[20]
REICH R B, OLEKSYN J. Global patterns of plant leaf N and P in relation to temperature and latitude[J]. PNAS, 2004, 101(30):11001-11006. DOI: 10.1073/pnas.0403588101.
[21]
原雅楠, 李正才, 王斌, 等. 榧树种内C、N、P生态化学计量特征研究[J]. 林业科学研究, 2019, 32(6):73-79.
YUAN Y N, LI Z C, WANG B, et al. Stoichiometric characteristics of C,N and P in different varieties of Torreya grandis[J]. For Res, 2019, 32(6):73-79. DOI: 10.13275/j.cnki.lykxyj.2019.06.010.
[22]
崔浩, 张前前, 陈明月, 等. 鄱阳湖南矶湿地22种植物根系碳氮及其化学计量研究[J]. 生态学报, 2020, 40(3):864-873.
CUI H, ZHANG Q Q, CHEN M Y, et al. Root C, N and C:N stoichiometry of 22 plant species in Nanji wetlands of Poyang Lake[J]. Acta Ecol Sin, 2020, 40(3):864-873. DOI: 10.5846/stxb201811012357.
[23]
ZHANG G Q, ZHANG P, PENG S Z, et al. The coupling of leaf, litter, and soil nutrients in warm temperate forests in northwestern China[J]. Sci Rep, 2017, 7(1):11754. DOI: 10.1038/s41598-017-12199-5.
[24]
HAN W X, FANG J Y, GUO D L, et al. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China[J]. New Phytol, 2005, 168(2):377-385. DOI: 10.1111/j.1469-8137.2005.01530.x.
[25]
杨文高, 字洪标, 陈科宇, 等. 青海森林生态系统中灌木层和土壤生态化学计量特征[J]. 植物生态学报, 2019, 43(4):352-364.
Abstract
灌木层作为森林生态系统的重要组成部分, 了解其生态化学计量特征将有助于揭示森林生态系统物质周转和养分循环等生态功能。该研究选取青海省7种主要优势林分——白桦(Betula platyphylla)林、毛白杨(Populus tomentosa)林、红桦(Betula albosinensis)林、青扦(Picea wilsonii)林、山杨(Populus davidiana)林、圆柏(Sabina chinensis)林、云杉(Picea asperata)林为研究对象, 采用野外取样和室内实验分析相结合的方法, 研究了不同林分林下灌木层不同器官(叶、枝干、根)及其表层(0-10 cm)土壤的碳(C)、氮(N)、磷(P)含量及其相关性。结果表明: 7种林分间灌木(叶、枝干、根) P含量、C:P均没有明显差异性; 山杨林、圆柏林、云杉林的林下灌木(叶、枝干、根) N含量、N:P高于白桦林、毛白杨林、红桦林和青扦林, C:N则相反。圆柏林的林下灌木生长受P限制, 其余6种林分的林下灌木生长受N限制。7种林分间土壤有机碳(SOC)和总氮(TN)含量呈现出明显差异性, 而总磷(TP)含量则差异不明显。相关性分析表明, 林下灌木(叶、枝干、根) N含量、C:N、N:P与土壤TN含量、C:N、N:P呈极显著相关性, 而P含量、C:P与土壤TP含量呈显著相关性。冗余分析表明, 林下灌木层植被C、N、P含量及生态化学计量特征受到土壤化学计量特征及各环境因子的共同影响, 其中土壤C:N、海拔、年平均气温、年降水量为主要影响因子。
YANG W G, ZI H B, CHEN K Y, et al. Ecological stoichiometric characteristics of shrubs and soils in different forest types in Qinghai, China[J]. Chin J Plant Ecol, 2019, 43(4):352-364. DOI: 10.17521/cjpe.2018.0326.
[26]
PAN F J, ZHANG W, LIU S, et al. Leaf N:P stoichiometry across plant functional groups in the Karst region of southwestern China[J]. Trees, 2015, 29(3):883-892. DOI: 10.1007/s00468-015-1170-y.
[27]
STERNER R W, ELSER J J. Ecological stoichiometry: the biology of elements from molecules to the biosphere[EB/OL]. https://doi.org/10.1093/plankt/25.9.1183,2002
[28]
吴鹏, 崔迎春, 赵文君, 等. 茂兰喀斯特区68种典型植物叶片化学计量特征[J]. 生态学报, 2020, 40(14):5063-5080.
WU P, CUI Y C, ZHAO W J, et al. Leaf stoichiometric characteristics of 68 typical plant species in Maolan National Nature Reserve, Guizhou, China[J]. Acta Ecol Sin, 2020, 40(14):5063-5080. DOI: 10.5846/stxb201904080678.
[29]
张藤子, 李亚楠, 韩飞燕, 等. 辽西两种油松混交林土壤及油松叶片C:N:P化学计量特征[J]. 生态学杂志, 2018, 37(10):3061-3067.
ZHANG T Z, LI Y N, HAN F Y, et al. C:N:P stoichiometry of Pinus tabuliformis leaf and soil in two mixed stands in western Liaoning Province[J]. Chin J Ecol, 2018, 37(10):3061-3067. DOI: 10.13292/j.1000-4890.201810.015.
[30]
仇宏格, 杨秀清, 梁楠, 等. 基于叶片性状变化下云杉幼苗更新的C, N, P调控机制[J]. 山西农业科学, 2019, 47(3):329-333.
QIU H G, YANG X Q, LIANG N, et al. Regulation mechanism of C, N and P on Picea aspoerata seedling regeneration based on leaf traits change[J]. J Shanxi Agric Sci, 2019, 47(3):329-333. DOI: 10.3969/j.issn.1002-2481.2019.03.09.
[31]
TIAN D, YAN Z B, MA S H, et al. Family-level leaf nitrogen and phosphorus stoichiometry of global terrestrial plants[J]. Sci China Life Sci, 2019, 62(8):1047-1057. DOI: 10.1007/s11427-019-9584-1.
[32]
柯立, 崔珺, 杨佳, 等. 安徽石台亚热带常绿阔叶林植物叶中C、N、P特征分析[J]. 南京林业大学学报(自然科学版), 2014, 38(6):28-32.
KE L, CUI J, YANG J, et al. Foliar C, N and P stoichiometry in subtropical evergreen broad-leaf forestin Shitai County, Anhui Province[J]. J Nanjing For Univ (Nat Sci Ed), 2014, 38(6):28-32. DOI: 10.3969/j.issn.1000-2006.2014.06.006.
[33]
张志录, 刘中华, 陈明辉. 伏牛山区红豆杉不同叶龄叶片性状对海拔梯度的响应[J]. 福州大学学报(自然科学版), 2019, 47(2):265-271,278.
ZHANG Z L, LIU Z H, CHEN M H. Effects of altitude gradient on the leaf traits at different leaf age of Taxus chinensis in Funiu area[J]. J Fuzhou Univ (Nat Sci Ed), 2019, 47(2):265-271, 278. DOI: 10.7631/issn.1000-2243.18234.
[34]
KOERSELMAN W, MEULEMAN A F M. The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation[J]. J Appl Ecol, 1996, 33(6):1441-1450.DOI: 10.2307/2404783.
[35]
杨承栋. 我国人工林土壤有机质的量和质下降是制约林木生长的关键因子[J]. 林业科学, 2016, 52(12):1-12.
YANG C D. Decline of quantity and quality of soil organic matter is the key factorrestricting the growth of plantation in China[J]. Sci Silvae Sin, 2016, 52(12):1-12. DOI: 10.11707/j.1001-7488.20161201.
[36]
贺合亮, 阳小成, 李丹丹, 等. 青藏高原东部窄叶鲜卑花碳、氮、磷化学计量特征[J]. 植物生态学报, 2017, 41(1):126-135.
Abstract
为了探究青藏高原东部窄叶鲜卑花(Sibiraea angustata)灌木不同器官碳(C)、氮(N)、磷(P)含量的分配格局及其生态化学计量特征, 该文采用分层随机抽样方法布设样地, 选择16个窄叶鲜卑花灌丛样地, 分别采集窄叶鲜卑花灌木根、茎、叶、当年枝和果等植物器官样品, 并分析样品C、N、P含量及其计量比。结果表明: C、N、P在不同器官中的含量分别表现为茎>当年枝>果>根>叶; 叶>果>当年枝>茎>根; 果>叶>当年枝>根>茎。窄叶鲜卑花各器官中C含量相对稳定, N、P含量变异系数较大, 在根部的变异系数最大。在不同器官中N:P的范围为7.12-12.41, 其值变化不大, N:P变异系数的最小值在当年枝中, 说明N:P在当年枝中的内稳性较高。在该灌木植物体中C与N之间、C与P之间呈极显著的负相关关系, C对N、P具有稀释作用; N与P呈极显著正相关关系, N与P间具有较好的耦合协同性。分析发现: 窄叶鲜卑花不同器官C、N、P化学计量特征在一定程度上符合内稳态理论和生长速率理论, 其元素分配与器官所执行的功能密切相关; 同时指出在物种水平上应当谨慎使用生态化学计量比来判断养分的限制情况。
HE H L, YANG X C, LI D D, et al. Stoichiometric characteristics of carbon, nitrogen and phosphorus of Sibiraea angustata shrub on the eastern Qinghai-Xizang Plateau[J]. Chin J Plant Ecol, 2017, 41(1):126-135. DOI: 10.17521/cjpe.2016.0031.
[37]
罗艳, 贡璐, 朱美玲, 等. 塔里木河上游荒漠区4种灌木植物叶片与土壤生态化学计量特征[J]. 生态学报, 2017, 37(24):8326-8335.
LUO Y, GONG L, ZHU M L, et al. Stoichiometry characteristics of leaves and soil of four shrubs in the upper reaches of the Tarim River Desert[J]. Acta Ecol Sin, 2017, 37(24):8326-8335. DOI: 10.5846/stxb201611222379.
[38]
LIH L, CRABBE M J C, XU F L, et al. Seasonal variations in carbon, nitrogen and phosphorus concentrations and C:N:P stoichiometry in different organs of a Larix principis-rupprechtii Mayr. plantation in the Qinling Mountains, China[J]. PLoS One, 2017, 12(9):e0185163. DOI: 10.1371/journal.pone.0185163.
[39]
周磊, 吴慧, 王树力. 不同林分红皮云杉针叶养分含量及生态化学计量特征研究[J]. 植物资源与环境学报, 2020, 29(3):19-25, 33.
ZHOU L, WU H, WANG S L. Study on nutrient contents and ecological stoichiometric characteristics in needles of Picea koraiensis in different stands[J]. J Plant Resou rEnviron, 2020, 29(3):19-25, 33. DOI: 10.3969/j.issn.1674-7895.2020.03.03.
[40]
李川, 朱陈名, 葛之葳, 等. 芦苇与土壤间氮磷化学计量的灰色关联分析[J]. 南京林业大学学报(自然科学版), 2016, 40(2):16-20.
LI C, ZHU C M, GE Z W, et al. Gray correlation analysis on nitrogen and phosphorus stoichiometrybetween Phragmites australis and soil[J]. J Nanjing For Univ (Nat Sci Ed), 2016, 40(2):16-20. DOI: 10.3969/j.issn.1000-2006.2016.02.003.
[41]
MATZEK V, VITOUSEK P M. N:P stoichiometry and protein:RNA ratios in vascular plants: an evaluation of the growth-rate hypojournal[J]. Ecol Lett, 2009, 12(8):765-771. DOI: 10.1111/j.1461-0248.2009.01310.x.
[42]
TULLY K L, WOOD T E, SCHWANTES A M, et al. Soil nutrient availability and reproductive effort drive patterns in nutrient resorption in Pentaclethra macroloba[J]. Ecology, 2013, 94(4):930-940. DOI: 10.1890/12-0781.1.
[43]
VERGUTZ L, MANZONI S, PORPORATO A, et al. Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants[J]. Ecol Monogr, 2012, 82(2):205-220. DOI: 10.1890/11-0416.1.
[44]
EDWARDS E J, CHATELET D S, SACK L, et al. Leaf life span and the leaf economic spectrum in the context of whole plant architecture[J]. J Ecol, 2014, 102(2):328-336. DOI: 10.1111/1365-2745.12209.
[45]
樊博, 何光熊, 史亮涛, 等. 干热河谷草本植物叶片养分含量与养分再吸收效率的种间差异[J]. 西南农业学报, 2017, 30(9):2053-2059.
FAN B, HE G X, SHI L T, et al. Differences in nutrient content and nutrient resorption efficiencies of grass leaves among different species in arid-hot valley[J]. Southwest China J Agric Sci, 2017, 30(9):2053-2059. DOI: 10.16213/j.cnki.scjas.2017.9.022.
[46]
KOBE R K, LEPCZYK C A, IYER M. Resorption efficiency decreases with increasing green leaf nutrients in a global data set[J]. Ecology, 2005, 86(10):2780-2792. DOI: 10.1890/04-1830.
[47]
AN Y, WAN S Q, ZHOU X H, et al. Plant nitrogen concentration, use efficiency, and contents in a tallgrass prairie ecosystem under experimental warming[J]. Glob Change Biol, 2005, 11(10):1733-1744. DOI: 10.1111/j.1365-2486.2005.01030.x.
[48]
AERTS R. Nutrient use efficiency in evergreen and deciduous species from heathlands[J]. Oecologia, 1990, 84(3):391-397. DOI: 10.1007/BF00329765.
[49]
严思维, 陈爱民, 林勇明, 等. 干热河谷区不同林龄赤桉叶中养分含量和再吸收率的比较及其线性回归分析[J]. 植物资源与环境学报, 2017, 26(1):39-46.
YAN S W, CHEN A M, LIN Y M, et al. Comparisons on content and reabsorption rate of nutrients in leaf of Eucalyptus camaldulensis at different stand ages in arid-hot valley and their linear-regression analysis[J]. J Plant Resour Environ, 2017, 26(1):39-46. DOI: 10.3969/j.issn.1674-7895.2017.01.05.
[50]
闫涛, 杨凯, 朱教君. 辽东山区主要树种叶片氮、磷、钾再吸收[J]. 生态学杂志, 2014, 33(8):2005-2011.
YAN T, YANG K, ZHU J J. Leaf N, P and K resorption of major tree species in a montane region of eastern Liaoning Province, China[J]. Chin J Ecol, 2014, 33(8):2005-2011. DOI: 10.13292/j.1000-4890.2014.0178.

RIGHTS & PERMISSIONS

Copyright reserved © 2021.
PDF(1615 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/