
Standing volume prediction of Pinus sylvestris var. mongolica based on machine learning algorithm
SUN Mingchen, JIANG Lichun
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2023, Vol. 47 ›› Issue (1) : 31-37.
Standing volume prediction of Pinus sylvestris var. mongolica based on machine learning algorithm
【Objective】 Using various, nonlinear machine learning algorithms, different volume models were constructed and compared to provide a theoretical basis for the accurate prediction of the volume of Pinus sylvestris var. mongolica.【Method】 A total of 184 felled Pinus sylvestris var. mongolica trees in the Tuqiang Forestry Bureau of the Greater Khingan Mountains were used to establish a nonlinear binary volume model (NLR). Three optimal machine learning algorithms were obtained using the K-fold cross test and OOB error test, including back propagation neural network (BP), ε-support vector regression (ε-SVR), and random forest (RF). An optimal volume model was obtained by comparing and analyzing the differences between the different models. 【Result】 The results showed that the machine learning algorithm was superior to the traditional binary volume model in the fitting and prediction of standing volume, and the specific order was RF > BP > ε-SVR > NLR. Compared with the traditional model, the R2 of RF increased by 2.00%; the RMSE, RMSE% and MAE decreased by 22.95%, 22.93% and 36.34%, respectively; and the absolute value of MRB was lower than the real value, which proved the superiority of RF in volume prediction. 【Conclusion】 Machine learning algorithms can effectively improve the accuracy at which standing volume can be predicted, providing a new solution for the accurate investigation and management of forest resources.
Pinus sylvestris var. mongolica / binary volume model / BP neural network / ε-support vector regression(ε-SVR) / random forest(RF)
[1] |
|
[2] |
|
[3] |
廖祖辉. 福建桉树人工林材积表和蓄积量表编制的研究[J]. 福建林业科技, 2005, 32(2):17-20.
|
[4] |
吕勇, 刘辉, 王才喜. 杉木林分蓄积量不同测定方法的比较[J]. 中南林学院学报, 2001, 21(4): 50-53.
|
[5] |
|
[6] |
|
[7] |
曾伟生. 杉木相容性立木材积表系列模型研建[J]. 林业科学研究, 2014, 27(1): 6-10.
|
[8] |
许晴, 李晓莎, 许中旗, 等. 塞罕坝地区樟子松立木材积表研究[J]. 林业资源管理, 2017(1): 57-62.
|
[9] |
雷相东. 机器学习算法在森林生长收获预估中的应用[J]. 北京林业大学学报, 2019, 41(12): 23-36.
|
[10] |
Classification procedures are some of the most widely used statistical methods in ecology. Random forests (RF) is a new and powerful statistical classifier that is well established in other disciplines but is relatively unknown in ecology. Advantages of RF compared to other statistical classifiers include (1) very high classification accuracy; (2) a novel method of determining variable importance; (3) ability to model complex interactions among predictor variables; (4) flexibility to perform several types of statistical data analysis, including regression, classification, survival analysis, and unsupervised learning; and (5) an algorithm for imputing missing values. We compared the accuracies of RF and four other commonly used statistical classifiers using data on invasive plant species presence in Lava Beds National Monument, California, USA, rare lichen species presence in the Pacific Northwest, USA, and nest sites for cavity nesting birds in the Uinta Mountains, Utah, USA. We observed high classification accuracy in all applications as measured by cross-validation and, in the case of the lichen data, by independent test data, when comparing RF to other common classification methods. We also observed that the variables that RF identified as most important for classifying invasive plant species coincided with expectations based on the literature.
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
靳晓东, 姜立春. 基于树干不同形率的樟子松立木材积方程研建[J]. 北京林业大学学报, 2020, 42(3):78-86.
|
[21] |
张明铁. 单株立木材积测定方法的研究[J]. 林业资源管理, 2004(1):24-26.
|
[22] |
|
[23] |
王轶夫, 孙玉军, 郭孝玉. 基于BP神经网络的马尾松立木生物量模型研究[J]. 北京林业大学学报, 2013, 35(2): 17-21.
|
[24] |
徐晓明. SVM参数寻优及其在分类中的应用[D]. 大连: 大连海事大学, 2014.
|
[25] |
曹正凤. 随机森林算法优化研究[D]. 北京: 首都经济贸易大学, 2014.
|
[26] |
[27] |
|
[28] |
杜军岗, 魏汝祥, 刘宝平. 基于PSO优化LS-SVM的小样本非线性协整检验与建模研究[J]. 系统工程理论与实践, 2014, 34(9): 2322-2331.
针对小样本非线性时间序列,根据非线性协整的定义,利用基于粒子群优化最小二乘支持向量机的方法,对小样本非线性协整关系检验与非线性误差修正模型建模进行研究,设计了方法的 逻辑流程. 对舰船维修费指数与物价指数进行实证研究,在协整关系类型判断的基础上,实现了小样本非线性协整关系的检验,建立了预测舰船维修费指数的非线性误差修正模型,并与线 性向量自回归模型进行分析比较. 研究表明:基于粒子群优化最小二乘支持向量机的小样本非线性协整检验与建模方法,刻画了小样本系统的非线性协整关系,所建立的非线性误差修正模 型具有较好的预测效果,能够有效地预测小样本非线性系统.
|
[29] |
|
/
〈 |
|
〉 |