Growth and chlorophyll fluorescence characteristics of walnut (Juglans regia) seedling under different nitrogen supply levels

HUANG Xiaohui, WU Jiaojiao, WANG Yushu, FENG Dalan, SUN Xiangyang

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (2) : 119-126.

PDF(2296 KB)
PDF(2296 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (2) : 119-126. DOI: 10.12302/j.issn.1000-2006.202104016

Growth and chlorophyll fluorescence characteristics of walnut (Juglans regia) seedling under different nitrogen supply levels

Author information +
History +

Abstract

【Objective】The adaptability of walnut (Juglans regia L.) to nitrogen deficiency and respective adaptive mechanisms were studied.【Method】Different nitrogen deficiency treatments, including a control (CK), moderate nitrogen deficiency (MN), and severe nitrogen deficiency (SN), were used to study the effects of nitrogen deficiency stress on morphological characteristics, growth, and chlorophyll fluorescence parameters of walnut seedlings.【Result】Nitrogen deficiency caused walnut seedlings to lose green but a show yellow coloration, and the growth was decreased. Biomass of the above-ground and below-ground parts, chlorophyll a, chlorophyll b, and carotenoid content were significantly lower compared to the control, and the decrease was more pronounced with the increasing nitrogen deficiency and over time, especially in the late treatment (60-75 d). The values of Fv/Fm and Fv'/Fm' of walnut seedlings treated subjected to MN and SN treatments were significantly affected at the early (0-30 d) and late stage (60-75 d). The actual photochemical efficiency (ΦPSII), electron transfer rate (ETR), and photochemical quenching coefficient (qP) decreased significantly with the increasing stress, whereas the non-photochemical quenching coefficient (NPQ) increased with the increasing stress, and the effect was more pronounced in the late stage (60-75 d). The aboveground biomass was positively correlated with the belowground biomass, leaf area, root surface area, chlorophyll a content, Fv/Fm, and ETR, whereas the chlorophyll a content was positively correlated with the leaf area, leaf thickness, Fv/Fm, and Fv/Fm'. 【Conclusion】Nitrogen deficiency inhibits absorption and assimilation of nitrogen, hinders the root growth, and affects absorption and utilization of nutrients in walnut seedlings; as a result, the seedlings show dwarfism, weak growth, and smaller leaves with the brighter coloration. Under the nitrogen deficiency stress, the decrease in photosynthetic pigment content in walnuts can also reduce the ability of chloroplasts to absorb light and reduce photosynthetic electron transfer rates and the utilization efficiency of light energy, thereby limiting the photosynthetic rates and plant growth.

Key words

nitrogen deficiency / walnut / morphological characteristics / chlorophyll fluorescence parameters

Cite this article

Download Citations
HUANG Xiaohui , WU Jiaojiao , WANG Yushu , et al . Growth and chlorophyll fluorescence characteristics of walnut (Juglans regia) seedling under different nitrogen supply levels[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2022, 46(2): 119-126 https://doi.org/10.12302/j.issn.1000-2006.202104016

References

[1]
傅本重, 邹路路, 朱洁倩, 等. 中国核桃生产现状与发展思路[J]. 江苏农业科学, 2018, 46(18):5-8.
FU B Z, ZOU L L, ZHU J Q, et al. Current status and development ideas of China’s walnut production[J]. Jiangsu Agric Sci, 2018, 46(18):5-8. DOI: 10.15889/j.issn.1002-1302.2018.18.002.
[2]
马庆国, 乐佳兴, 宋晓波, 等. 新中国果树科学研究70年:核桃[J]. 果树学报, 2019, 36(10):1360-1368.
MA Q G, YUE J X, SONG X B, et al. Fruit scientific research in new China in the past 70 years:walnut[J]. J Fruit Sci, 2019, 36(10):1360-1368. DOI: 10.13925/j.cnki.gsxb.Z10.
[3]
郭向华. 主要矿质元素含量与早实核桃产量质量的关系[D]. 保定: 河北农业大学, 2006.
GUO X H. The relationship of main mineral elements contents and yield,quality of early bearing walnut[D]. Baoding: Hebei Agricultural University, 2006.
[4]
樊卫国, 葛慧敏, 吴素芳, 等. 氮素形态及配比对铁核桃苗生长及营养吸收的影响[J]. 林业科学, 2013, 49(5):77-84.
FAN W G, GE H M, WU S F, et al. Effect of nitrogen forms and the ratios on growth and nutrient absorption of Juglans sigillata seedling[J]. Sci Silvae Sin, 2013, 49(5):77-84. DOI: 10.11707/j.1001-7488.20130511.
[5]
王益明, 卢艺, 张慧, 等. 指数施肥对美国山核桃幼苗生长及叶片养分含量的影响[J]. 中国土壤与肥料, 2018(6):136-140.
WANG Y M, LU Y, ZHANG H, et al. Effects of exponential fertilization on growth and foliar nutrient status of pecan seedlings[J]. Soils Fertil Sci China, 2018(6):136-140. DOI: 10.11838/sfsc.20180619.
[6]
宋岩, 张锐, 鱼尚奇, 等. 不同施氮水平对核桃砧木苗形态特征及生理特性的影响[J]. 福建农业学报, 2020, 35(3):309-316.
SONG Y, ZHANG R, YU S Q, et al. Morphology and physiology of walnut stock seedlings as affected by nitrogen fertilizations[J]. Fujian J Agric Sci, 2020, 35(3):309-316. DOI: 10.19303/j.issn.1008-0384.2020.03.010.
[7]
林郑和, 陈荣冰, 陈常颂. 植物对氮胁迫的生理适应机制研究进展[J]. 湖北农业科学, 2011, 50(23):4761-4764.
LIN Z H, CHEN R B, CHEN C S. Research progress on physiological adaptability of plants to nitrogen deficiency[J]. Hubei Agric Sci, 2011, 50(23):4761-4764. DOI: 10.14088/j.cnki.issn0439-8114.2011.23.003.
[8]
李强, 罗延宏, 龙文靖, 等. 低氮胁迫对不同耐低氮性玉米品种苗期生长和生理特性的影响[J]. 草业学报, 2014, 23(4):204-212.
LI Q, LUO Y H, LONG W J, et al. Effect of low nitrogen stress on different low nitrogen tolerance maize cultivars seedling stage growth and physiological characteristics[J]. Acta Prataculturae Sin, 2014, 23(4):204-212. DOI: 10.11686/cyxb20140425.
[9]
EVANS J R, CLARKE V C. The nitrogen cost of photosynthesis[J]. J Exp Bot, 2019, 70(1):7-15. DOI: 10.1093/jxb/ery366.
[10]
LIU X, YIN C M, XIANG L, et al. Transcription strategies related to photosynthesis and nitrogen metabolism of wheat in response to nitrogen deficiency[J]. BMC Plant Biol, 2020, 20(1):448. DOI: 10.1186/s12870-020-02662-3.
[11]
蔡瑞国, 张敏, 戴忠民, 等. 施氮水平对优质小麦旗叶光合特性和子粒生长发育的影响[J]. 植物营养与肥料学报, 2006, 12(1):49-55.
CAI R G, ZHANG M, DAI Z M, et al. Effects of nitrogen application rate on flag leaf photosynthetic characteristics and grain growth and development of high-quality wheat[J]. Plant Nutr Fertil Sci, 2006, 12(1):49-55. DOI: 10.3321/j.issn:1008-505X.2006.01.009.
[12]
ANTAL T, MATTILA H, HAKALA-YATKIN M, et al. Acclimation of photosynthesis to nitrogen deficiency in Phaseolus vulgaris[J]. Planta, 2010, 232(4):887-898. DOI: 10.1007/s00425-010-1227-5.
[13]
黄小辉, 冯大兰, 刘芸, 等. 模拟石漠化异质生境中桑树的生长和叶绿素荧光特性[J]. 北京林业大学学报, 2016, 38(10):50-58.
HUANG X H, FENG D L, LIU Y, et al. Growth and chlorophyll fluorescence characteristics of mulberry trees in simulated environment of heterogeneous habitats of a rocky desertification area[J]. J Beijing For Univ, 2016, 38(10):50-58. DOI: 10.13332/j.1000-1522.20150324.
[14]
WEI W, YE C, HUANG H C, et al. Appropriate nitrogen application enhances saponin synthesis and growth mediated by optimizing root nutrient uptake ability[J]. J Ginseng Res, 2020, 44(4):627-636. DOI: 10.1016/j.jgr.2019.04.003.
[15]
陈静, 刘连涛, 孙红春, 等. 外源NO对缺氮胁迫下棉花幼苗形态及生长的调控效应[J]. 中国农业科学, 2014, 47(23):4565-4575.
CHEN J, LIU L T, SUN H C, et al. Regulatory effects of exogenous nitric oxide on morphology of cotton seedlings under nitrogen stress[J]. Sci Agric Sin, 2014, 47(23):4565-4575. DOI: 10.3864/j.issn.0578-1752.2014.23.005.
[16]
刘芳, 林李华, 张立丹, 等. 缺氮和恢复供氮对香蕉苗生长和根系形态参数的影响[J]. 果树学报, 2019, 36(1):67-75.
LIU F, LIN L H, ZHANG L D, et al. Effects of N deficiency and resupply of N nutrient on banana growth and root morphological parameters[J]. J Fruit Sci, 2019, 36(1):67-75. DOI: 10.13925/j.cnki.gsxb.20180168.
[17]
TRUBAT R, CORTINA J, VILAGROSA A. Plant morphology and root hydraulics are altered by nutrient deficiency in Pistacia lentiscus (L.)[J]. Trees, 2006, 20(3):334-339. DOI: 10.1007/s00468-005-0045-z.
[18]
FERREIRA V S, PINTO R F, SANT’ANNA C. Low light intensity and nitrogen starvation modulate the chlorophyll content of Scenedesmus dimorphus[J]. J Appl Microbiol, 2016, 120(3):661-670. DOI: 10.1111/jam.13007.
[19]
朱超, 冀爱青, 宁婵娟, 等. 氮素形态对早实核桃叶片光合特性和果实品质的影响[J]. 河南农业大学学报, 2012, 46(5):526-529,534.
ZHU C, JI A Q, NING C J, et al. Effects of different forms of nitrogen on leaf photosynthetic characteristics and nuts quality of early-fruiting walnut[J]. J Henan Agric Univ, 2012, 46(5):526-529,534. DOI: 10.16445/j.cnki.1000-2340.2012.05.016.
[20]
ROSCIOLI J D, GHOSH S, LAFOUNTAIN A M, et al. Quantum coherent excitation energy transfer by carotenoids in photosynthetic light harvesting[J]. J Phys Chem Lett, 2017, 8(20):5141-5147. DOI: 10.1021/acs.jpclett.7b01791.
[21]
PAN S G, LIU H D, MO Z W, et al. Effects of nitrogen and shading on root morphologies,nutrient accumulation,and photosynthetic parameters in different rice genotypes[J]. Sci Rep, 2016, 6:32148. DOI: 10.1038/srep32148.
[22]
ZHANG T, YANG S B, GUO R, et al. Warming and nitrogen addition alter photosynthetic pigments,sugars and nutrients in a temperate meadow ecosystem[J]. PLoS One, 2016, 11(5):e0155375. DOI: 10.1371/journal.pone.0155375.
[23]
李小涵, 武建军, 吕爱锋, 等. 不同CO2浓度变化下干旱对冬小麦叶面积指数的影响差异[J]. 生态学报, 2013, 33(9):2936-2943.
LI X H, WU J J, A F, et al. The difference of drought impacts on winter wheat leaf area index under different CO2 concentration[J]. Acta Ecol Sin, 2013, 33(9):2936-2943.
[24]
高雪, 贾中立, 林凯丽, 等. 水旱条件下小麦叶面积指数和叶绿素含量QTL定位[J]. 植物遗传资源学报, 2021, 22(4):1109-1119.
GAO X, JIA Z L, LIN K L, et al. QTL mapping of leaf area index and chlorophyll content in wheat with normal irrigation and under drought stress[J]. J Plant Genet Resour, 2021, 22(4):1109-1119. DOI: 10.13430/j.cnki.jpgr.20210129002.
[25]
YAO X D, LI C H, LI S Y, et al. Effect of shade on leaf photosynthetic capacity,light-intercepting,electron transfer and energy distribution of soybeans[J]. Plant Growth Regul, 2017, 83(3):409-416. DOI: 10.1007/s10725-017-0307-y.
[26]
张青青, 周再知, 王西洋, 等. 施肥对柚木光合生理和叶绿素荧光特性的影响[J]. 中南林业科技大学学报, 2021, 41(4):31-38.
ZHANG Q Q, ZHOU Z Z, WANG X Y, et al. Effects of fertilization on photosynthetic and chlorophyll fluorescence characteristics of Tectona grandis[J]. J Central South Univ For Technol, 2021, 41(4):31-38. DOI: 10.14067/j.cnki.1673-923x.2021.04.004.
[27]
PARK S, FISCHER A L, STEEN C J, et al. Chlorophyll-carotenoid excitation energy transfer in high-light-exposed thylakoid membranes investigated by snapshot transient absorption spectroscopy[J]. J Am Chem Soc, 2018, 140(38):11965-11973. DOI: 10.1021/jacs.8b04844.
[28]
WANG Y, JIN W W, CHE Y H, et al. Atmospheric nitrogen dioxide improves photosynthesis in mulberry leaves via effective utilization of excess absorbed light energy[J]. Forests, 2019, 10(4):312. DOI: 10.3390/f10040312.
[29]
相昆, 李宪利, 王晓芳, 等. 水分胁迫下外源NO对核桃叶绿素荧光的影响[J]. 果树学报, 2006, 23(4):616-619.
XIANG K, LI X L, WANG X F, et al. Effects of exogenous nitric oxide on the chlorophyll fluorescence parameters of walnut under water stress[J]. J Fruit Sci, 2006, 23(4):616-619. DOI: 10.3969/j.issn.1009-9980.2006.04.029.
PDF(2296 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/