JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (2): 119-126.doi: 10.12302/j.issn.1000-2006.202104016
Previous Articles Next Articles
HUANG Xiaohui1,2(), WU Jiaojiao3, WANG Yushu2, FENG Dalan2, SUN Xiangyang1,*()
Received:
2021-04-12
Accepted:
2021-10-14
Online:
2022-03-30
Published:
2022-04-08
Contact:
SUN Xiangyang
E-mail:407221681@qq.com;sunxy@bjfu.edu.cn
CLC Number:
HUANG Xiaohui, WU Jiaojiao, WANG Yushu, FENG Dalan, SUN Xiangyang. Growth and chlorophyll fluorescence characteristics of walnut (Juglans regia) seedling under different nitrogen supply levels[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(2): 119-126.
Table 1
Experiment schemes of element deficiency ofwalnut seedlings"
营养条件 nutrient conditions | 处理 treatment | |||
---|---|---|---|---|
CK | MN | SN | ||
大量元素用量/ (mg·L-1) macro element | Ca(NO3)2·4H2O | 945 | 472.5 | — |
KNO3 | 607 | 303.5 | — | |
NH4H2PO4 | 115 | 57.5 | — | |
MgSO4 | 493.0 | 493.0 | 493.0 | |
CaCl2 | — | 222.2 | 444.5 | |
KCl | — | 223.7 | 447.3 | |
NaH2PO4·H2O | — | 70.9 | 141.7 | |
铁盐用量/(g·L-1) (pH=5.5) iron salt | FeSO4·7H2O | 5.56 | 5.56 | 5.56 |
Na2EDTA | 7.46 | 7.46 | 7.46 | |
微量元素用量/ (mg·L-1) (pH=6.0) micro element | KI | 0.83 | 0.83 | 0.83 |
MnSO4 | 22.30 | 22.30 | 22.30 | |
Na2MoO4 | 0.25 | 0.25 | 0.25 | |
CuSO4 | 0.025 | 0.025 | 0.025 | |
CoCl2 | 0.025 | 0.025 | 0.025 | |
H3BO3 | 6.20 | 6.20 | 6.20 | |
ZnSO4 | 8.60 | 8.60 | 8.60 |
Table 2
The above-ground biomass, leaf area and leaf thickness of walnut seedlings under different nitrogen levels(mean±SE)"
处理时间/d treatment time | 地上部分生物量/g above-ground biomass | 叶面积/cm2 leaf area | 叶片厚度/mm leaf thickness | ||||||
---|---|---|---|---|---|---|---|---|---|
CK | MN | SN | CK | MN | SN | CK | MN | SN | |
0 | 1.58±0.09 Fa | 1.63±0.08 Fa | 1.59±0.09 Ea | 59.4±3.08 Ca | 57.8±3.10 Ea | 58.2±4.09 Ba | 0.15±0.01 Ba | 0.16±0.01 Ba | 0.14±0.01 Aa |
15 | 3.13±0.18 Ea | 2.09±0.12 Eb | 2.28±0.11 Db | 95.5±7.21 Ba | 65.3±6.15 Db | 59.9±6.13 Bb | 0.21±0.01 Aa | 0.16±0.02 Bb | 0.15±0.01 Ab |
30 | 5.95±0.24 Da | 4.14±0.27 Db | 3.54±0.19 Cc | 96.8±8.20 Ba | 77.3±6.16 Cb | 61.2±5.18 Bc | 0.22±0.02 Aa | 0.19±0.01 Ab | 0.13±0.01 Ac |
45 | 11.38±0.59 Ca | 9.34±0.43 Cb | 6.34±0.32 Bc | 112.3±8.45 Aa | 89.7±6.39 Bb | 66.8±6.23 Ac | 0.22±0.02 Aa | 0.16±0.01 Bb | 0.13±0.01 Ac |
60 | 17.43±0.83 Ba | 13.24±0.64 Bb | 7.28±0.46 Ac | 115.4±9.85 Aa | 96.6±7.69 Ab | 69.0±6.52 Ac | 0.19±0.01 Aa | 0.17±0.01 Ba | 0.12±0.02 Ab |
75 | 24.61±1.69 Aa | 14.48±1.12 Ab | 7.57±0.63 Ac | 119.3±9.83 Aa | 97.9±7.18 Ab | 70.9±7.13 Ac | 0.21±0.01 Aa | 0.15±0.01 Bb | 0.13±0.01 Aa |
Table 3
The above-ground biomass, leaf area and leaf thickness of walnut seedlings under different nitrogen levels(mean±SE)"
处理时间/d treatment time | 根系生物量/g root biomass | 根系表面积/cm2 root surface-area | 根冠比/% root-shoot ratio | ||||||
---|---|---|---|---|---|---|---|---|---|
CK | MN | SN | CK | MN | SN | CK | MN | SN | |
0 | 1.12±0.08 Fa | 1.21±0.10 Fa | 1.17±0.09 Fa | 35.9±3.4 Fa | 38.4±3.7 Fa | 36.8±3.2 Fa | 0.71±0.05 Ba | 0.74±0.06 Da | 0.73±0.05 Ea |
15 | 3.17±0.21 Ea | 1.63±0.15 Eb | 1.59±0.13 Eb | 252.8±17.2Ea | 194.9±14.1 Eb | 88.1±7.1 Ec | 1.01±0.06 Aa | 0.78±0.04 Db | 0.70±0.05 Eb |
30 | 3.76±0.20 Da | 3.21±0.16 Db | 3.38±0.18 Db | 464.5±28.2 Da | 423.4±26.6 Db | 342.3±21.5 Dc | 0.63±0.04 Cc | 0.78±0.05 Db | 0.95±0.08 Ca |
45 | 8.84±0.45 Ca | 8.14±0.39 Ca | 5.13±0.23 Cb | 977.5±40.5 Ca | 811.4±38.4Cb | 688.9±30.3 Cc | 0.78±0.05 Bb | 0.87±0.06 Ca | 0.81±0.06 Dab |
60 | 16.34±0.85 Ba | 13.25±0.69 Bb | 8.78±0.52Bc | 1002.4±64.3 Ba | 870.5±54. 9 Bb | 808.7±50.5 Bb | 0.94±0.07 Ab | 1.00±0.09 Bb | 1.21±0.11 Ba |
75 | 23.97±1.83 Aa | 19.59±1.18 Ab | 15.05±1.13 Ac | 1214.6±75.4 Aa | 941.6±61. 8 Ab | 892.7±51.6 Ac | 0.97±0.09 Ac | 1.35±0.12 Ab | 1.99±0.14 Aa |
Table 4
The photosynthetic pigment content in leaf of walnut seedlings under different nitrogen levels(mean±SE)"
处理时间/d treatment time | 叶绿素a含量/(mg·g-1) chlorophyll a content | 叶绿素b含量/(mg·g-1) chlorophyll b content | 类胡萝卜素含量/(mg·g-1) carotenoid content | ||||||
---|---|---|---|---|---|---|---|---|---|
CK | MN | SN | CK | MN | SN | CK | MN | SN | |
0 | 2.62±0.21 Da | 2.58±0.23 Aa | 2.59±0.24 ABa | 1.86±0.12 Ba | 1.93±0.15 Aa | 1.97±0.14 Ba | 0.36±0.03 Ca | 0.33±0.03 Ca | 0.35±0.03 Ba |
15 | 2.95±0.24 Ca | 2.57±0.22 Aa | 2.87±0.26 Aa | 2.62±0.21 Aa | 2.11±0.19 Ab | 2.24±0.19 Ab | 0.13±0.01 Db | 0.27±0.02 Da | 0.23±0.02 Ca |
30 | 3.43±0.28 Ba | 2.92±0.28 Ab | 2.60±0.24 Bc | 1.40±0.11 Da | 1.16±0.08 Bb | 1.01±0.09 Cb | 0.97±0.08 Aa | 0.83±0.07 Aa | 0.64±0.05 Ab |
45 | 2.92±0.25 Ca | 2.76±0.26 Ba | 2.61±0.23 Ba | 1.86±0.15 Ba | 0.99±0.06 Cb | 0.89±0.07 Db | 0.35±0.03 Ca | 0.34±0.03 Ca | 0.34±0.03 Ba |
60 | 4.08±0.37 Aa | 3.32±0.31 Ab | 2.79±0.27 Bc | 1.62±0.13 Ca | 1.27±0.11 Bb | 1.15±0.10 Cb | 0.54±0.05 Ba | 0.44±0.04 bBb | 0.39±0.03 Bb |
75 | 3.86±0.34 Aa | 2.70±0.25 Bb | 1.87±0.17 Cc | 1.11±0.10 Ea | 0.96±0.08 Cb | 0.61±0.07 Ec | 0.50±0.04 Ba | 0.36±0.03 Cb | 0.22±0.02 Cc |
Table 5
Correlation coefficients among mulberry tree indexes"
指标 index | ABS | LS | LT | RB | RSA | RSR | Chl a | Chl b | Car | Fv/Fm | | ΦPSⅡ | ETR | qP | NPQ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ABS | 1.00 | ||||||||||||||
LS | 0.84* | 1.00 | |||||||||||||
LT | 0.38 | 0.75 | 1.00 | ||||||||||||
RB | 0.95** | 0.71 | 0.21 | 1.00 | |||||||||||
RSA | 0.89* | 0.75 | 0.20 | 0.87* | 1.00 | ||||||||||
RSR | 0.42 | 0.19 | -0.27 | 0.66 | 0.58 | 1.00 | |||||||||
Chl a | 0.81* | 0.84* | 0.83* | 0.75 | 0.70 | -0.24 | 1.00 | ||||||||
Chl b | -0.42 | -0.11 | 0.34 | -0.51 | -0.63 | -0.56 | 0.11 | 1.00 | |||||||
Car | 0.14 | 0.22 | 0.36 | 0.02 | 0.10 | -0.27 | 0.44 | -0.35 | 1.00 | ||||||
Fv/Fm | 0.80* | 0.61 | 0.26 | 0.35 | 0.71 | 0.11 | 0.83* | -0.37 | 0.20 | 1.00 | |||||
| 0.57 | 0.40 | 0.35 | -0.08 | 0.31 | -0.37 | 0.88* | -0.02 | 0.32 | 0.81* | 1.00 | ||||
ΦPSⅡ | 0.14 | 0.25 | 0.54 | 0.38 | 0.10 | -0.61 | 0.42 | 0.34 | 0.35 | 0.73 | 0.83* | 1.00 | |||
ETR | 0.78* | 0.61 | 0.51 | 0.54 | 0.29 | -0.76 | 0.85* | 0.49 | 0.28 | 0.30 | 0.74 | 0.96** | 1.00 | ||
qP | 0.44 | 0.36 | 0.54 | 0.59 | 0.59 | -0.70 | 0.69 | 0.63 | 0.26 | -0.24 | 0.25 | 0.73 | 0.78* | 1.00 | |
NPQ | -0.45 | -0.13 | -0.45 | -0.66 | -0.61 | 0.90** | -0.22 | -0.66 | -0.23 | 0.16 | -0.33 | -0.70 | -0.84* | -0.86* | 1.00 |
[1] | 傅本重, 邹路路, 朱洁倩, 等. 中国核桃生产现状与发展思路[J]. 江苏农业科学, 2018, 46(18):5-8. |
FU B Z, ZOU L L, ZHU J Q, et al. Current status and development ideas of China’s walnut production[J]. Jiangsu Agric Sci, 2018, 46(18):5-8. DOI: 10.15889/j.issn.1002-1302.2018.18.002.
doi: 10.15889/j.issn.1002-1302.2018.18.002 |
|
[2] | 马庆国, 乐佳兴, 宋晓波, 等. 新中国果树科学研究70年:核桃[J]. 果树学报, 2019, 36(10):1360-1368. |
MA Q G, YUE J X, SONG X B, et al. Fruit scientific research in new China in the past 70 years:walnut[J]. J Fruit Sci, 2019, 36(10):1360-1368. DOI: 10.13925/j.cnki.gsxb.Z10.
doi: 10.13925/j.cnki.gsxb.Z10 |
|
[3] | 郭向华. 主要矿质元素含量与早实核桃产量质量的关系[D]. 保定: 河北农业大学, 2006. |
GUO X H. The relationship of main mineral elements contents and yield,quality of early bearing walnut[D]. Baoding: Hebei Agricultural University, 2006. | |
[4] | 樊卫国, 葛慧敏, 吴素芳, 等. 氮素形态及配比对铁核桃苗生长及营养吸收的影响[J]. 林业科学, 2013, 49(5):77-84. |
FAN W G, GE H M, WU S F, et al. Effect of nitrogen forms and the ratios on growth and nutrient absorption of Juglans sigillata seedling[J]. Sci Silvae Sin, 2013, 49(5):77-84. DOI: 10.11707/j.1001-7488.20130511.
doi: 10.11707/j.1001-7488.20130511 |
|
[5] | 王益明, 卢艺, 张慧, 等. 指数施肥对美国山核桃幼苗生长及叶片养分含量的影响[J]. 中国土壤与肥料, 2018(6):136-140. |
WANG Y M, LU Y, ZHANG H, et al. Effects of exponential fertilization on growth and foliar nutrient status of pecan seedlings[J]. Soils Fertil Sci China, 2018(6):136-140. DOI: 10.11838/sfsc.20180619.
doi: 10.11838/sfsc.20180619 |
|
[6] | 宋岩, 张锐, 鱼尚奇, 等. 不同施氮水平对核桃砧木苗形态特征及生理特性的影响[J]. 福建农业学报, 2020, 35(3):309-316. |
SONG Y, ZHANG R, YU S Q, et al. Morphology and physiology of walnut stock seedlings as affected by nitrogen fertilizations[J]. Fujian J Agric Sci, 2020, 35(3):309-316. DOI: 10.19303/j.issn.1008-0384.2020.03.010.
doi: 10.19303/j.issn.1008-0384.2020.03.010 |
|
[7] | 林郑和, 陈荣冰, 陈常颂. 植物对氮胁迫的生理适应机制研究进展[J]. 湖北农业科学, 2011, 50(23):4761-4764. |
LIN Z H, CHEN R B, CHEN C S. Research progress on physiological adaptability of plants to nitrogen deficiency[J]. Hubei Agric Sci, 2011, 50(23):4761-4764. DOI: 10.14088/j.cnki.issn0439-8114.2011.23.003.
doi: 10.14088/j.cnki.issn0439-8114.2011.23.003 |
|
[8] | 李强, 罗延宏, 龙文靖, 等. 低氮胁迫对不同耐低氮性玉米品种苗期生长和生理特性的影响[J]. 草业学报, 2014, 23(4):204-212. |
LI Q, LUO Y H, LONG W J, et al. Effect of low nitrogen stress on different low nitrogen tolerance maize cultivars seedling stage growth and physiological characteristics[J]. Acta Prataculturae Sin, 2014, 23(4):204-212. DOI: 10.11686/cyxb20140425.
doi: 10.11686/cyxb20140425 |
|
[9] |
EVANS J R, CLARKE V C. The nitrogen cost of photosynthesis[J]. J Exp Bot, 2019, 70(1):7-15. DOI: 10.1093/jxb/ery366.
doi: 10.1093/jxb/ery366 |
[10] |
LIU X, YIN C M, XIANG L, et al. Transcription strategies related to photosynthesis and nitrogen metabolism of wheat in response to nitrogen deficiency[J]. BMC Plant Biol, 2020, 20(1):448. DOI: 10.1186/s12870-020-02662-3.
doi: 10.1186/s12870-020-02662-3 |
[11] | 蔡瑞国, 张敏, 戴忠民, 等. 施氮水平对优质小麦旗叶光合特性和子粒生长发育的影响[J]. 植物营养与肥料学报, 2006, 12(1):49-55. |
CAI R G, ZHANG M, DAI Z M, et al. Effects of nitrogen application rate on flag leaf photosynthetic characteristics and grain growth and development of high-quality wheat[J]. Plant Nutr Fertil Sci, 2006, 12(1):49-55. DOI: 10.3321/j.issn:1008-505X.2006.01.009.
doi: 10.3321/j.issn:1008-505X.2006.01.009 |
|
[12] |
ANTAL T, MATTILA H, HAKALA-YATKIN M, et al. Acclimation of photosynthesis to nitrogen deficiency in Phaseolus vulgaris[J]. Planta, 2010, 232(4):887-898. DOI: 10.1007/s00425-010-1227-5.
doi: 10.1007/s00425-010-1227-5 |
[13] | 黄小辉, 冯大兰, 刘芸, 等. 模拟石漠化异质生境中桑树的生长和叶绿素荧光特性[J]. 北京林业大学学报, 2016, 38(10):50-58. |
HUANG X H, FENG D L, LIU Y, et al. Growth and chlorophyll fluorescence characteristics of mulberry trees in simulated environment of heterogeneous habitats of a rocky desertification area[J]. J Beijing For Univ, 2016, 38(10):50-58. DOI: 10.13332/j.1000-1522.20150324.
doi: 10.13332/j.1000-1522.20150324 |
|
[14] |
WEI W, YE C, HUANG H C, et al. Appropriate nitrogen application enhances saponin synthesis and growth mediated by optimizing root nutrient uptake ability[J]. J Ginseng Res, 2020, 44(4):627-636. DOI: 10.1016/j.jgr.2019.04.003.
doi: 10.1016/j.jgr.2019.04.003 |
[15] | 陈静, 刘连涛, 孙红春, 等. 外源NO对缺氮胁迫下棉花幼苗形态及生长的调控效应[J]. 中国农业科学, 2014, 47(23):4565-4575. |
CHEN J, LIU L T, SUN H C, et al. Regulatory effects of exogenous nitric oxide on morphology of cotton seedlings under nitrogen stress[J]. Sci Agric Sin, 2014, 47(23):4565-4575. DOI: 10.3864/j.issn.0578-1752.2014.23.005.
doi: 10.3864/j.issn.0578-1752.2014.23.005 |
|
[16] | 刘芳, 林李华, 张立丹, 等. 缺氮和恢复供氮对香蕉苗生长和根系形态参数的影响[J]. 果树学报, 2019, 36(1):67-75. |
LIU F, LIN L H, ZHANG L D, et al. Effects of N deficiency and resupply of N nutrient on banana growth and root morphological parameters[J]. J Fruit Sci, 2019, 36(1):67-75. DOI: 10.13925/j.cnki.gsxb.20180168.
doi: 10.13925/j.cnki.gsxb.20180168 |
|
[17] |
TRUBAT R, CORTINA J, VILAGROSA A. Plant morphology and root hydraulics are altered by nutrient deficiency in Pistacia lentiscus (L.)[J]. Trees, 2006, 20(3):334-339. DOI: 10.1007/s00468-005-0045-z.
doi: 10.1007/s00468-005-0045-z |
[18] |
FERREIRA V S, PINTO R F, SANT’ANNA C. Low light intensity and nitrogen starvation modulate the chlorophyll content of Scenedesmus dimorphus[J]. J Appl Microbiol, 2016, 120(3):661-670. DOI: 10.1111/jam.13007.
doi: 10.1111/jam.13007 |
[19] | 朱超, 冀爱青, 宁婵娟, 等. 氮素形态对早实核桃叶片光合特性和果实品质的影响[J]. 河南农业大学学报, 2012, 46(5):526-529,534. |
ZHU C, JI A Q, NING C J, et al. Effects of different forms of nitrogen on leaf photosynthetic characteristics and nuts quality of early-fruiting walnut[J]. J Henan Agric Univ, 2012, 46(5):526-529,534. DOI: 10.16445/j.cnki.1000-2340.2012.05.016.
doi: 10.16445/j.cnki.1000-2340.2012.05.016 |
|
[20] |
ROSCIOLI J D, GHOSH S, LAFOUNTAIN A M, et al. Quantum coherent excitation energy transfer by carotenoids in photosynthetic light harvesting[J]. J Phys Chem Lett, 2017, 8(20):5141-5147. DOI: 10.1021/acs.jpclett.7b01791.
doi: 10.1021/acs.jpclett.7b01791 |
[21] |
PAN S G, LIU H D, MO Z W, et al. Effects of nitrogen and shading on root morphologies,nutrient accumulation,and photosynthetic parameters in different rice genotypes[J]. Sci Rep, 2016, 6:32148. DOI: 10.1038/srep32148.
doi: 10.1038/srep32148 |
[22] |
ZHANG T, YANG S B, GUO R, et al. Warming and nitrogen addition alter photosynthetic pigments,sugars and nutrients in a temperate meadow ecosystem[J]. PLoS One, 2016, 11(5):e0155375. DOI: 10.1371/journal.pone.0155375.
doi: 10.1371/journal.pone.0155375 |
[23] | 李小涵, 武建军, 吕爱锋, 等. 不同CO2浓度变化下干旱对冬小麦叶面积指数的影响差异[J]. 生态学报, 2013, 33(9):2936-2943. |
LI X H, WU J J, LÜ A F, et al. The difference of drought impacts on winter wheat leaf area index under different CO2 concentration[J]. Acta Ecol Sin, 2013, 33(9):2936-2943. | |
[24] | 高雪, 贾中立, 林凯丽, 等. 水旱条件下小麦叶面积指数和叶绿素含量QTL定位[J]. 植物遗传资源学报, 2021, 22(4):1109-1119. |
GAO X, JIA Z L, LIN K L, et al. QTL mapping of leaf area index and chlorophyll content in wheat with normal irrigation and under drought stress[J]. J Plant Genet Resour, 2021, 22(4):1109-1119. DOI: 10.13430/j.cnki.jpgr.20210129002.
doi: 10.13430/j.cnki.jpgr.20210129002 |
|
[25] |
YAO X D, LI C H, LI S Y, et al. Effect of shade on leaf photosynthetic capacity,light-intercepting,electron transfer and energy distribution of soybeans[J]. Plant Growth Regul, 2017, 83(3):409-416. DOI: 10.1007/s10725-017-0307-y.
doi: 10.1007/s10725-017-0307-y |
[26] | 张青青, 周再知, 王西洋, 等. 施肥对柚木光合生理和叶绿素荧光特性的影响[J]. 中南林业科技大学学报, 2021, 41(4):31-38. |
ZHANG Q Q, ZHOU Z Z, WANG X Y, et al. Effects of fertilization on photosynthetic and chlorophyll fluorescence characteristics of Tectona grandis[J]. J Central South Univ For Technol, 2021, 41(4):31-38. DOI: 10.14067/j.cnki.1673-923x.2021.04.004.
doi: 10.14067/j.cnki.1673-923x.2021.04.004 |
|
[27] |
PARK S, FISCHER A L, STEEN C J, et al. Chlorophyll-carotenoid excitation energy transfer in high-light-exposed thylakoid membranes investigated by snapshot transient absorption spectroscopy[J]. J Am Chem Soc, 2018, 140(38):11965-11973. DOI: 10.1021/jacs.8b04844.
doi: 10.1021/jacs.8b04844 |
[28] |
WANG Y, JIN W W, CHE Y H, et al. Atmospheric nitrogen dioxide improves photosynthesis in mulberry leaves via effective utilization of excess absorbed light energy[J]. Forests, 2019, 10(4):312. DOI: 10.3390/f10040312.
doi: 10.3390/f10040312 |
[29] | 相昆, 李宪利, 王晓芳, 等. 水分胁迫下外源NO对核桃叶绿素荧光的影响[J]. 果树学报, 2006, 23(4):616-619. |
XIANG K, LI X L, WANG X F, et al. Effects of exogenous nitric oxide on the chlorophyll fluorescence parameters of walnut under water stress[J]. J Fruit Sci, 2006, 23(4):616-619. DOI: 10.3969/j.issn.1009-9980.2006.04.029.
doi: 10.3969/j.issn.1009-9980.2006.04.029 |
[1] | WEI Yajuan, GUO Jing, DANG Xiaohong, Xie Yunhu, WANG Ji, LI Xiaole, WU Huimin. Morphological characteristics and influencing mechanisms of Nitraria tangutorum nebkhas at different sandy land types in desert oasis ecotone of Jilantai [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(5): 172-180. |
[2] | LIU Jialei, BAI Run’e, ZHANG Kai, WEN Caiyi, YAN Fengming. Description of common whiteflies (Hemiptera: Aleyrodidae) on Osmanthus fragrans in China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(5): 237-244. |
[3] | QIU Jing, LI Jiabao, ZHU Dahai, CHEN Xin. Taxonomic implications of genome sizes and micromorphological characteristics of leaf epidermis of species in Sorbus Sect. Alnifoliae [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(3): 77-86. |
[4] | LI Jianhui, LI Bohai, WU Sizheng, BAI Wenfu, YU Lin, NIE Dongling, YAN Jiawen, XIONG Ying, XIANG Zuheng, PENG Xianfeng. Research on the nutphenotypic traits and diversities of walnut in western Hunan [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(1): 171-179. |
[5] | TANG Min, YANG Kaiyu, ZHANG Sainan, CHEN Liying, LIU Yang, ZHANG Xuemei, QI Guohui. Effects of selenium on the activities of antioxidant protective enzymes and fruit quality of walnut [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(5): 127-134. |
[6] | WANG Runsong, XU Hanmei, CAO Guohua, SHEN Caiqin, RUAN Honghua. Effects of applying biogas slurry on the morphological characteristics of fine roots of poplar plantations [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(5): 119-124. |
[7] | YUAN Tingting, LU Yuanfeng, XIE Yinfeng, MA Yingli, WU Tong, NI Zhen. Effects of combined application of boron-molybdenum-copper microfertilizers on photosynthetic characteristics of Pseudostellaria heterophylla [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(4): 130-136. |
[8] | DU Jincheng, LI Xinxin, DENG Xiaobing, MU Changlong. Comparisons of leaf functional characteristics of nine olive varieties [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(2): 159-164. |
[9] | ZHU Youpeng, LIU Hongli, HAN Changzhi. Prediction of secretory protein in walnut bacterial black spot pathogen [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2019, 43(03): 17-22. |
[10] | GENG Shuxiang, NING Delu, CHEN Haiyun, HE Na. Comprehensive evaluation and analysis of nutrient contents of the main walnut varieties in Yunnan [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2019, 43(02): 209-215. |
[11] | ZHAO Yunfang, DAI Jialing, GAO Suping, LEI Ting, JIANG Yulan, ZHANG Xinzhou, ZHU Yuting. Flower bud differentiation process and its morphology and anatomical structure in two types of stigma of Plumbago auriculata [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2018, 42(06): 203-208. |
[12] | LYU Donglin,LIN Lin,GUO Yiwen, HAN Rui,JIANG Jing. Characterization of gene expression in anthocyanin synthesis and salt tolerance of Betula pendula ‘Purple Rain' [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2018, 42(02): 25-32. |
[13] | GENG Shuxiang,NING Delu, LI Yongjie, CHEN Haiyun, XIAO Liangjun. A comparative study on quality characteristics of main walnut and pecan varieties in Yunnan Province [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2017, 41(06): 193-198. |
[14] | ZHANG Rui, LI Hui, PENG Fangren, HAO Mingzhuo, ZHAI Min. Flowering morphological characteristics, pollen viability and stigma receptivity of Carya illinoinensis [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2014, 38(03): 50-54. |
[15] | XIE Yinfeng, LI Bo,TAO Gongsheng,ZHANG Qianqian,ZHANG Chunxia. Effects of nano-silicon dioxide on photosynthetic fluorescence characteristics ofIndocalamus barbatus McClure [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2012, 36(02): 59-63. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||