
Hydrogen and oxygen isotopes and hydrochemical parameters of water samples from the Sichuan Zoige Wetland Nature Reserve
SUN Rongqing, DONG Liqin, ZHANG Kun, LIU Hongqiang, WANG Heyi, HU Zhaoyi
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (2) : 169-178.
Hydrogen and oxygen isotopes and hydrochemical parameters of water samples from the Sichuan Zoige Wetland Nature Reserve
【Objective】 This study aimed to clarify the water environment characteristics and water supply relationship in the Zoige Wetland Nature Reserve, thereby providing a theoretical reference for protecting and improving this wetland and water ecosystem. 【Method】 In this study, the abundance of stable hydrogen and oxygen isotopes was measured using a liquid water/water vapor isotope analyzer, and eight ion hydrochemical characteristic indexes were measured using ion chromatography. The chemical parameters and stable hydrogen and oxygen isotopes of different water bodies (precipitation water, river water, swamp water, and underground water) in Zoige Wetland National Nature Reserve were analyzed[(δ(D) and δ(18O)], the hydrochemical types and spatial distribution characteristics of isotopes in this area were preliminarily examined, and their formation causes and environmental significance were discussed. 【Result】 (1) The main chemical type of lake water and that of the Heihe River which flows in and out of the wetlands is $HCO_{3}^{-}$-Ca (calcium bicarbonate) water. (2) The “atmospheric water line” in Ruoergai in summer is δ(D)=8.28 δ(18O)+13.86, indicating that it is less affected by the local water vapor and secondary evaporation, but evaporation is strong. Lower δ(18O) and δ(D) values reflect the characteristics of concentrated and abundant precipitation in the rainy season under the influence of marine warm and humid air masses and intense erosion of heavy isotopes along the way. The split simulation results showed that the water vapor in Zoige in summer originated from the stable westerly zone and was controlled by a westerly circulation. (3) Precipitation is the initial source of river water, swamp water, and groundwater, and the slope of river water is similar to that of swamp water, which indicates that the supply relationship between them is close and will occur most frequently. Swamp water was supplied by the tributaries of the Heihe River (Guoqu, Jingu, Amengqu, and Dena rivers), whereas the mainstream of Heihe River and the swamp were supplied through the respective intersections. 【Conclusion】 Hydrochemical characteristics of each water body in Zoige were mainly affected by water-rock interactions in the basin. The stable hydrogen and oxygen isotope characteristics of the water bodies revealed the processes of precipitation, evaporation, atmospheric circulation, and hydrological cycling in the basin.
Zoige Wetland Nature Reserve / atmospheric precipitation / hydrogen and oxygen isotopes / deuterium surplus / hydrochemical
[1] |
|
[2] |
张晓云, 吕宪国, 沈松平. 若尔盖高原湿地生态系统服务价值动态[J]. 应用生态学报, 2009, 20(5):1147-1152.
|
[3] |
|
[4] |
邹长新, 陈金林, 李海东. 基于模糊综合评价的若尔盖湿地生态安全评价[J]. 南京林业大学学报(自然科学版), 2012, 36(3):53-58.
|
[5] |
白军红, 欧阳华, 王庆改, 等. 大规模排水前后若尔盖高原湿地景观格局特征变化[J]. 农业工程学报, 2009, 25(S1):64-68.
|
[6] |
张兵, 宋献方, 张应华, 等. 三江平原地表水与地下水氢氧同位素和水化学特征[J]. 水文, 2014, 34(2):38-43.
|
[7] |
|
[8] |
|
[9] |
|
[10] |
刘兵, 王贺, 姜永海, 等. 基于水化学和氢氧同位素的东宫河流域不同水体转化关系研究[J]. 环境科学研究, 2020, 33(9):1979-1990.
|
[11] |
苏鹏燕, 张明军, 王圣杰, 等. 基于氢氧稳定同位素的黄河兰州段河岸植物水分来源[J]. 应用生态学报, 2020, 31(6):1835-1843.
|
[12] |
宋梦媛, 李忠勤, 王飞腾, 等. 新疆吉木乃诸河水体氢氧同位素和水化学特征[J]. 环境化学, 2020, 39(7):1809-1820.
|
[13] |
朱雅娟, 齐凯, 庞志勇. 夏季高寒沙地乌柳林的水分来源[J]. 南京林业大学学报(自然科学版), 2019, 43(1):91-97.
|
[14] |
林聪业, 高柏, 华恩祥, 等. 拉萨河流域水环境氢氧同位素特征及其指示意义[J]. 有色金属(冶炼部分), 2020(11):99-106.
|
[15] |
|
[16] |
崔蕊, 汪季, 张成福, 等. 吉兰泰盐湖氢氧同位素及湖水来源分析[J]. 内蒙古林业科技, 2019, 45(1):17-21.
|
[17] |
张海月. 金佛山流域不同水体中氢氧稳定同位素特征及其环境意义[D]. 重庆: 西南大学, 2018.
|
[18] |
左丹丹, 罗鹏, 杨浩, 等. 保护地空间邻近效应和保护成效评估:以若尔盖湿地国家级自然保护区为例[J]. 应用与环境生物学报, 2019, 25(4):854-861.
|
[19] |
向雪梅. 若尔盖湿地保护区地下水运动特征[D]. 成都: 四川大学, 2006.
|
[20] |
|
[21] |
张楠, 范春楠, 陈思羽, 等. 次生落叶阔叶林降雨过程中的4种金属元素特征[J]. 南京林业大学学报(自然科学版), 2019, 43(4):178-184.
|
[22] |
徐秋娥, 刘澄静, 角媛梅, 等. 稳定氢氧同位素示踪水汽来源对哈尼梯田降水补给的影响[J]. 生态学报, 2020, 40(5):1709-1717.
|
[23] |
|
[24] |
|
[25] |
|
[26] |
陈琦, 郭锦荣, 李超, 等. 庐山地区大气降水中稳定同位素变化特征[J]. 自然资源学报, 2019, 34(6):1306-1316.
|
[27] |
隋明浈, 高德强, 徐庆, 等. 江苏高邮大气降水氢氧同位素特征及水汽来源[J]. 应用生态学报, 2019, 30(6):1823-1832.
|
[28] |
温艳茹, 王建力. 重庆地区大气场降水中氢氧同位素变化特征及与大气环流的关系[J]. 环境科学, 2016, 37(7):2462-2469.
|
[29] |
|
[30] |
郑淑蕙, 侯发高, 倪葆龄. 我国大气降水的氢氧稳定同位素研究[J]. 科学通报, 1983, 28(13):801-806.
|
[31] |
吴华武, 章新平, 孙广禄, 等. 湖南长沙地区大气降水中稳定同位素特征变化[J]. 长江流域资源与环境, 2012, 21(5):540-546.
|
[32] |
徐庆, 刘世荣, 安树青, 等. 卧龙地区大气降水氢氧同位素特征的研究[J]. 林业科学研究, 2006, 19(6):679-686.
|
[33] |
谷金钰, 张文杰, 许文盛, 等. 武汉市大气降水δ(D)和δ(18O)变化特征及水汽来源[J]. 人民长江, 2017, 48(13):31-35,63.
|
[34] |
武亚遵, 万军伟, 林云. 湖北宜昌西陵峡地区大气降雨氢氧同位素特征分析[J]. 地质科技情报, 2011, 30(3):93-97.
|
[35] |
魏笑. 黄土高原同纬度大气降水稳定同位素分析[D]. 杨凌: 西北农林科技大学, 2016.
|
[36] |
侯典炯, 秦翔, 吴锦奎, 等. 乌鲁木齐大气降水稳定同位素与水汽来源关系研究[J]. 干旱区资源与环境, 2011, 25(10):136-142.
|
[37] |
李广, 章新平, 张新主, 等. 云南腾冲地区大气降水中氢氧稳定同位素特征[J]. 长江流域资源与环境, 2013, 22(11):1458-1465.
|
[38] |
朱晓燕, 张美良, 吴夏, 等. 桂林地区大气降水(大雨、暴雨)的δ(18O)特征与水汽来源的关系[J]. 中国岩溶, 2017, 36(2):139-161.
|
[39] |
唐雁英. 水汽源区变化及其对流过程对我国典型东亚季风区降水稳定同位素的影响[D]. 南京: 南京大学, 2015.
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
刘芳, 曹广超, 曹生奎, 等. 祁连山南坡主要流域河水稳定同位素特征及补给关系[J]. 中国沙漠, 2020, 40(6):151-161.
|
[45] |
宋春林, 孙向阳, 王根绪. 贡嘎山亚高山降水稳定同位素特征及水汽来源研究[J]. 长江流域资源与环境, 2015, 24(11):1860-1869.
|
[46] |
刘芳. 祁连山南坡水体氢氧稳定同位素特征及转换关系研究[D]. 西宁: 青海师范大学, 2020.
|
[47] |
刘洁遥, 张福平, 冯起, 等. 陕甘宁地区降水稳定同位素特征及水汽来源[J]. 应用生态学报, 2019, 30(7):2191-2200.
|
[48] |
|
/
〈 |
|
〉 |