JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (1): 1-6.doi: 10.12302/j.issn.1000-2006.202104022
Previous Articles Next Articles
YANG Yong(), YANG Zhi(), DUAN Yifan, FANG Yanming
Received:
2021-04-15
Accepted:
2021-06-28
Online:
2022-01-30
Published:
2022-02-09
CLC Number:
YANG Yong, YANG Zhi, DUAN Yifan, FANG Yanming. Herbariomics: a new and powerful approach for dendrological studies[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(1): 1-6.
Table 1
A comparison among techniques including herbariomics, sanger sequencing, genome skimming, transcriptome, genotyping-by-sequencing and targeted sequence capture (modified from Yu et al[36])"
技术 technique | 材料要求 material requirements | DNA质量 要求 DNA quality requirements | 测序方法 sequencing method | 测序对象 sequencing object | 引物或 探针设计 primer or probe design | 获得数据 get data | 同源性确定 homology determination | 测序成本 sequencing cost | 适用分类等级 applicable classification level |
---|---|---|---|---|---|---|---|---|---|
标本组学 herbariomics | 要求较低,标本材料 | 较低 | 二代测序 | 全基因组或探针捕获位点 | 不需要 | 叶绿体基因组、线粒体基因组、nrDNA、核基因组的大多数位点 | 容易 | 较低 | 各个等级 |
一代测序 sanger sequencing | 新鲜材料、硅胶干燥材料 | 适中 | 一代测序 | 目标序列片段 | 引物设计 | nrITS、rbcL、psbA-trnH、matK、LEAFY等常规片段 | 容易 | 较低 | 各个等级 |
扩增子测序 amplicon sequencing | 新鲜材料、硅胶干燥材料 | 适中 | 一代测序 | 目标序列片段 | 引物设计 | 确定的目标片段 | 容易 | 适中 | 各个等级 |
浅层测序 genome skimming | 要求较低,标本、硅胶干燥材料、新鲜材料等 | 较低 | 二代测序 | 全基因组 | 不需要 | 叶绿体基因组、线粒体基因组、nrDNA、基因的编码区和非编码区 | 容易 | 较低 | 各个等级 |
靶序列捕获 targeted sequence capture | 要求较低,标本、硅胶干燥材料、新鲜材料等 | 较低 | 二代测序 | 探针捕获位点 | 探针设计 | 核基因、叶绿体、线粒体,编码区和非编码区 | 容易 | 较低 | 各个等级 |
转录组测序 transcriptome | 要求严格,新鲜材料 | 较高 | 二代测序 | cDNA | 不需要 | 核基因组的大多数位点,编码基因 | 相对容易 | 较高 | 属以上等级 |
简化基因组 genotyping-by- sequencing | 要求较高,硅胶干燥材料、新鲜材料 | 适中 | 二代测序 | 限制性 片段 | 不需要 | 主要是来自核基因组的SNP位点,编码区和非编码区 | 较难 | 适中 | 近缘属、近缘种或群体水平 |
[1] | 祁承经, 汤庚国. 树木学(南方版)[M]. 北京: 中国林业出版社, 2020. |
[2] | JUDD W S, CAMPBELL C S, KELLOGG E A, 等. 植物系统学[M].李德铢,等,译. 北京: 高等教育出版社, 2012. |
JUDD W S, CAMPBELL C S, KELLOGG E A, et al. Plant systematics:a phylogenetic approach[M]. LI D Z, et al, trans. Beijing: Higher Education Press, 2012. | |
[3] | 达尔文. 物种起源[M].周建人,等,译. 北京: 商务印书馆, 1995. |
DARWIN C. The origin of species[M]. ZHOU J R, et al, trans. Beijing: The Commercial Press, 1995. | |
[4] | 郑万钧, 傅立国. 中国植物志(第7卷): 裸子植物门[M]. 北京: 科学出版社, 1978. |
[5] |
ARNOLD C A. Classification of gymnosperms from the viewpoint of paleobotany[J]. Bot Gazette, 1948, 110(1):2-12.DOI: 10.1086/335513.
doi: 10.1086/335513 |
[6] |
CHAMBERLAIN C J. Gymnosperms:structure and evolution[J]. Nature, 1935, 136(3434):278-279.DOI: 10.1038/136278a0.
doi: 10.1038/136278a0 |
[7] |
FU D Z, YANG Y, ZHU G H. A new scheme of classification of living gymnosperms at family level[J]. Kew Bull, 2004, 59(1):111.DOI: 10.2307/4111081.
doi: 10.2307/4111081 |
[8] |
KENG H. A new scheme of classification of the conifers[J]. Taxon, 1975, 24(2/3):289-292.DOI: 10.2307/1218337.
doi: 10.2307/1218337 |
[9] | PILGER R. Gymnospermae[M]// ENGLER A. Die Naturlichen Pflanzenfamilien. Leipzig: Verlag von Wilhelm Engelmann, 1926: 1-447. |
[10] | PILGER R, MELCHIOR H. XVI: Abteilung: Gymnospermae. Nackstamer. (Archispermae)[M]// MELCHIOR H, WERDERMANN E A. Engler’s Syllabus der Pflanzenfamilien. Band 1. Allgemeiner Teil Bakterien bis Gymnospermen. Allgemeiner Teil Bakterien bis Gymnospermen. Gebruder Borntraeger, Berlin-Nikolassee, 1954: 312-344. |
[11] | 杨永, 王志恒, 徐晓婷. 世界裸子植物的分类和地理分布[M]. 上海: 上海科学技术出版社, 2017. |
YANG Y, WANG Z H, XU X T. Taxonomy and distribution of global gymnosperms[M]. Shanghai: Shanghai Scientific & Technical Publishers, 2017. | |
[12] | 傅德志, 杨亲二. 银杏雌性生殖器官的形态学本质及其系统学意义[J]. 植物分类学报, 1993, 31(3):294-296. |
[13] | 傅德志, 杨亲二. 银杏雌性生殖器官的形态学本质及其系统学意义(续)[J]. 植物分类学报, 1993, 31(4):309-317. |
[14] |
DOUGLAS A W, STEVENSON D W, LITTLE D P. Ovule development in Ginkgo biloba L.,with emphasis on the collar and nucellus[J]. Int J Plant Sci, 2007, 168(9):1207-1236.DOI: 10.1086/521693.
doi: 10.1086/521693 |
[15] | KRAMER K U, GREEN P S. The families and genera of vascular plants I: Pteridophytes and gymnosperms[M]. Berlin: Springer-Verlag, 1990. |
[16] | 路安民, 汤彦承. 原始被子植物的起源与演化[M]. 北京: 科学出版社, 2020. |
[17] | 王文采. 当代四被子植物分类系统简介(一)[J]. 植物学通报, 1990, 25(2):1-17. |
WANG W C. An introduction to four important current systems of classification of the angiosperms (I)[J]. Chin Bull Bot, 1990, 25(2):1-17. | |
[18] | 王文采. 当代四被子植物分类系统简介(二)[J]. 植物学通报, 1990, 25(3):1-18. |
WANG W C. An introduction to four important current systems of classification of the angiosperms(Ⅱ)[J]. Chin Bull Bot, 1990, 25(3):1-18. | |
[19] |
GROUP T A P. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants:APG IV[J]. Bot J Linn Soc, 2016, 181(1):1-20.DOI: 10.1111/boj.12385.
doi: 10.1111/boj.12385 |
[20] | 胡亚亚, 刘兰服, 冀红柳, 等. 简化基因组测序技术研究进展[J]. 江苏师范大学学报(自然科学版), 2018, 36(4):63-68. |
HU Y Y, LIU L F, JI H L, et al. Research progress on the reduced-representation genome sequencing technique[J]. J Jiangsu Norm Univ (Nat Sci Ed), 2018, 36(4):63-68.DOI: 10.3969/j.issn.2095-4298.2018.04.012.
doi: 10.3969/j.issn.2095-4298.2018.04.012 |
|
[21] |
STRAUB S C, PARKS M, WEITEMIER K, et al. Navigating the tip of the genomic iceberg:next-generation sequencing for plant systematics[J]. Am J Bot, 2012, 99(2):349-364.DOI: 10.3732/ajb.1100335.
doi: 10.3732/ajb.1100335 |
[22] |
BAKKER F T. Herbarium genomics:plant archival DNA explored[M]//Population genomics. Cham: Springer International Publishing, 2018:205-224. DOI: 10.1007/13836_2018_40.
doi: 10.1007/13836_2018_40 |
[23] |
BESNARD G, CHRISTIN P A, MALÉ P J G, et al. From museums to genomics:old herbarium specimens shed light on a C3 to C4 transition[J]. J Exp Bot, 2014, 65(22):6711-6721.DOI: 10.1093/jxb/eru395.
doi: 10.1093/jxb/eru395 |
[24] |
ZEDANE L, HONG-WA C, MURIENNE J, et al. Museomics illuminate the history of an extinct,paleoendemic plant lineage (Hesperelaea,Oleaceae) known from an 1875 collection from Guadalupe Island,Mexico[J]. Biol J Linn Soc, 2016, 117(1):44-57.DOI: 10.1111/bij.12509.
doi: 10.1111/bij.12509 |
[25] |
DODSWORTH S, GUIGNARD M S, CHRISTENHUSZ M J M, et al. Potential of herbariomics for studying repetitive DNA in angiosperms[J]. Front Ecol Evol, 2018, 6:174.DOI: 10.3389/fevo.2018.00174.
doi: 10.3389/fevo.2018.00174 |
[26] |
JIN J J, YU W B, YANG J B, et al. GetOrganelle:a fast and versatile toolkit for accurate de novo assembly of organelle genomes[J]. Genome Biol, 2020, 21(1):241.DOI: 10.1186/s13059-020-02154-5.
doi: 10.1186/s13059-020-02154-5 |
[27] |
DIERCKXSENS N, MARDULYN P, SMITS G. NOVOPlasty:de novo assembly of organelle genomes from whole genome data[J]. Nucleic Acids Res, 2017, 45(4):e18.DOI: 10.1093/nar/gkw955.
doi: 10.1093/nar/gkw955 |
[28] |
JOHNSON M G, GARDNER E M, LIU Y, et al. HybPiper:Extracting coding sequence and introns for phylogenetics from high-throughput sequencing reads using target enrichment[J]. Appl Plant Sci, 2016, 4(7):1600016.DOI: 10.3732/apps.1600016.
doi: 10.3732/apps.1600016 |
[29] |
ALSOS I G, LAVERGNE S, MERKEL M K F, et al. The treasure vault can be opened:large-scale genome skimming works well using herbarium and silica gel dried material[J]. Plants, 2020, 9(4):432.DOI: 10.3390/plants9040432.
doi: 10.3390/plants9040432 |
[30] |
NEVILL P G, ZHONG X, TONTI-FILIPPINI J, et al. Large scale genome skimming from herbarium material for accurate plant identification and phylogenomics[J]. Plant Methods, 2020, 16:1.DOI: 10.1186/s13007-019-0534-5.
doi: 10.1186/s13007-019-0534-5 |
[31] |
ZENG C X, HOLLINGSWORTH P M, YANG J, et al. Genome skimming herbarium specimens for DNA barcoding and phylogenomics[J]. Plant Methods, 2018, 14:43.DOI: 10.1186/s13007-018-0300-0.
doi: 10.1186/s13007-018-0300-0 |
[32] |
BAKKER F T, LEI D, YU J Y, et al. Herbarium genomics:plastome sequence assembly from a range of herbarium specimens using an Iterative Organelle Genome Assembly pipeline[J]. Biol J Linn Soc, 2016, 117(1):33-43.DOI: 10.1111/bij.12642.
doi: 10.1111/bij.12642 |
[33] |
LIU B B, MA Z Y, REN C, et al. Capturing single-copy nuclear genes,organellar genomes,and nuclear ribosomal DNA from deep genome skimming data for plant phylogenetics:a case study in Vitaceae[J]. J Syst Evol, 2021, 59(5):1124-1138.DOI: 10.1111/jse.12806.
doi: 10.1111/jse.12806 |
[34] |
DODSWORTH S. Genome skimming for next-generation biodiversity analysis[J]. Trends Plant Sci, 2015, 20(9):525-527.DOI: 10.1016/j.tplants.2015.06.012.
doi: 10.1016/j.tplants.2015.06.012 |
[35] |
LEMMON A R, EMME S A, LEMMON E M. Anchored hybrid enrichment for massively high-throughput phylogenomics[J]. Syst Biol, 2012, 61(5):727-744.DOI: 10.1093/sysbio/sys049.
doi: 10.1093/sysbio/sys049 |
[36] |
YU X, YANG D, GUO C, et al. Plant phylogenomics based on genome-partitioning strategies: progress and prospects[J]. Plant Divers, 2018, 40(4):158-164.DOI: 10.1016/j.pld.2018.06.005.
doi: 10.1016/j.pld.2018.06.005 |
[37] |
DODSWORTH S, POKORNY L, JOHNSON M G, et al. Hyb-seq for flowering plant systematics[J]. Trends Plant Sci, 2019, 24(10):887-891.DOI: 10.1016/j.tplants.2019.07.011.
doi: 10.1016/j.tplants.2019.07.011 |
[38] |
STAATS M, ERKENS R H, VAN DE VOSSENBERG B, et al. Genomic treasure troves: complete genome sequencing of herbarium and insect museum specimens[J]. PLoS One, 2013, 8(7):e69189.DOI: 10.1371/journal.pone.0069189.
doi: 10.1371/journal.pone.0069189 |
[39] |
SHEE Z Q, FRODIN D G, CÁMARA-LERET R, et al. Reconstructing the complex evolutionary history of the papuasian Schefflera radiation through herbariomics[J]. Front Plant Sci, 2020, 11:258.DOI: 10.3389/fpls.2020.00258.
doi: 10.3389/fpls.2020.00258 |
[40] |
SCHNEIDER J V, PAULE J, JUNGCURT T, et al. Resolving recalcitrant clades in the pantropical Ochnaceae: insights from comparative phylogenomics of plastome and nuclear genomic data derived from targeted sequencing[J]. Front Plant Sci, 2021, 12:638650.DOI: 10.3389/fpls.2021.638650.
doi: 10.3389/fpls.2021.638650 |
[41] |
VAN DE PAER C, HONG-WA C, JEZIORSKI C, et al. Mitogenomics of Hesperelaea,an extinct genus of Oleaceae[J]. Gene, 2016, 594(2):197-202.DOI: 10.1016/j.gene.2016.09.007.
doi: 10.1016/j.gene.2016.09.007 |
[42] |
ANDERMANN T, TORRES JIMÉNEZ M F, MATOS-MARAVÍ P, et al. A guide to carrying out a phylogenomic target sequence capture project[J]. Front Genet, 2019, 10:1407.DOI: 10.3389/fgene.2019.01407.
doi: 10.3389/fgene.2019.01407 |
[43] |
BREWER G E, CLARKSON J J, MAURIN O, et al. Factors affecting targeted sequencing of 353 nuclear genes from herbarium specimens spanning the diversity of angiosperms[J]. Front Plant Sci, 2019, 10:1102.DOI: 10.3389/fpls.2019.01102.
doi: 10.3389/fpls.2019.01102 |
[44] |
SCHNEIDER J V, JUNGCURT T, CARDOSO D, et al. Phylogenomics of the tropical plant family Ochnaceae using targeted enrichment of nuclear genes and 250+ taxa[J]. TAXON, 2021, 70(1):48-71.DOI: 10.1002/tax.12421.
doi: 10.1002/tax.12421 |
[45] |
GARDNER E M, JOHNSON M G, PEREIRA J T, et al. Paralogs and off-target sequences improve phylogenetic resolution in a densely sampled study of the breadfruit genus (Artocarpus,Moraceae)[J]. Syst Biol, 2021, 70(3):558-575.DOI: 10.1093/sysbio/syaa073.
doi: 10.1093/sysbio/syaa073 |
[46] |
VILLAVERDE T, POKORNY L, OLSSON S, et al. Bridging the micro-and macroevolutionary levels in phylogenomics:Hyb-Seq solves relationships from populations to species and above[J]. New Phytol, 2018, 220(2):636-650.DOI: 10.1111/nph.15312.
doi: 10.1111/nph.15312 |
[47] |
HART M L, FORREST L L, NICHOLLS J A, et al. Retrieval of hundreds of nuclear loci from herbarium specimens[J]. TAXON, 2016, 65(5):1081-1092.DOI: 10.12705/655.9.
doi: 10.12705/655.9 |
[48] |
GERNANDT D S, AGUIRRE DUGUA X, VÁZQUEZ-LOBO A, et al. Multi-locus phylogenetics,lineage sorting,and reticulation in Pinus subsection Australes[J]. Am J Bot, 2018, 105(4):711-725.DOI: 10.1002/ajb2.1052.
doi: 10.1002/ajb2.1052 |
[49] | 王文采. 植物标本馆在植物分类学研究中的重要性[J]. 生命世界, 2011(9):1. |
[50] |
BAKKER F T, BIEKER V C, MARTIN M D. Editorial:herbarium collection-based plant evolutionary genetics and genomics[J]. Front Ecol Evol, 2020, 8:603948.DOI: 10.3389/fevo.2020.603948.
doi: 10.3389/fevo.2020.603948 |
[51] |
ALBANIROCCHETTI G, ARMSTRONG C G, ABELI T, et al. Reversing extinction trends: new uses of (old) herbarium specimens to accelerate conservation action on threatened species[J]. New Phytol, 2021, 230(2):433-450.DOI: 10.1111/nph.17133.
doi: 10.1111/nph.17133 |
[52] |
BAKKER F T, ANTONELLI A, CLARKE J A, et al. The global museum: natural history collections and the future of evolutionary science and public education[J]. PeerJ, 2020, 8:e8225.DOI: 10.7717/peerj.8225.
doi: 10.7717/peerj.8225 |
[53] | 马金双. 中国植物分类学的现状与挑战[J]. 科学通报, 2014, 59(6):510-521. |
MA J S. Current status and challenges of Chinese plant taxonomy[J]. Chin Sci Bull, 2014, 59(6):510-521. | |
[54] | 贺鹏, 陈军, 乔格侠. 中国科学院生物标本馆(博物馆)的现状与未来[J]. 中国科学院院刊, 2019, 34(12):1359-1370. |
HE P, CHEN J, QIAO G X. Current situation and future of biological collections of Chinese academy of sciences[J]. Bull Chin Acad Sci, 2019, 34(12):1359-1370.DOI: 10.16418/j.issn.1000-3045.2019.12.005.
doi: 10.16418/j.issn.1000-3045.2019.12.005 |
|
[55] | 胡启明, VIDA J E. 中南半岛紫金牛科植物志预报[J]. 热带亚热带植物学报, 1996(4):1-15. |
HU Q M, VIDA J E. Towards a revision of the Myrsinaceae of Indochina[J]. J Trop Subtrop Bot, 1996(4):1-15. | |
[56] | ZHU X Y, ZHANG R P, HE Y L. An inventory of legume species diversity of Myanmar[M]. Beijing: China Minzu University Press, 2021. |
[57] | 贺鹏, 陈军, 孔宏智, 等. 生物样本: 生物多样性研究与保护的重要支撑[J]. 中国科学院院刊, 2021, 36(4):425-435. |
HE P, CHEN J, KONG H Z, et al. Important supporting role of biological specimen in biodiversity conservation and research[J]. Bull Chin Acad Sci, 2021, 36(4):425-435.DOI: 10.16418/j.issn.1000-3045.20210323001.
doi: 10.16418/j.issn.1000-3045.20210323001 |
|
[58] |
WANDELER P, HOECK P E, KELLER L F. Back to the future: museum specimens in population genetics[J]. Trends Ecol Evol, 2007, 22(12):634-642.DOI: 10.1016/j.tree.2007.08.017.
doi: 10.1016/j.tree.2007.08.017 |
[1] | YI Xiangui, LI Meng, WANG Xianrong. A review on the taxonomy study of Prunus subgen. Cerasus (Mill) A. Gray [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(3): 46-57. |
[2] | LU Xudong, DONG Yuran, LI Yao, MAO Lingfeng. Community assembly mechanism for different planting ages of Chinese fir artificial forests in subtropical China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(1): 67-73. |
[3] | ZHAO Runan, CHU Xiaojie, LIU Wei, HE Qianqian, ZHU Zunling. Structure and variation analyses of chloroplast genomes in Carpinus [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(2): 25-34. |
[4] | SONG Yating, LIU Renjun, JIANG Yi, ZHOU Lifeng, TAN Jiajin, SUN Shouhui, CHEN Fengmao. Molecular and morphological characterization of Laimaphelenchus liaoningensis n. sp. (Nematoda: Aphelenchoididae) in China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(4): 93-101. |
[5] | PENG Fangren,LIANG Youwang, CAI Miao, CHEN Longsheng, CHEN Yongzhong. The 16SrDNA sequences analysis of associative nitrogen fixing bacteria from rhizosphere of Camellia oleifera [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2014, 38(01): 27-30. |
[6] | XU Lian. Developments in Population and Evolutionary Genetics Within the Genus Quercus L. [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2002, 26(06): 73-77. |
[7] | SHIQuan-liang. Phylogeny and Molecular Evolution of Populus [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2001, 25(04): 57-57. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||