Anatomical characteristics and radial variations in eight poplar clones/cultivars

LIU Yamei, LIU Shengquan, ZHOU Liang, HU Jianjun, ZHAO Zicheng, ZHENG Xiangli

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2023, Vol. 47 ›› Issue (1) : 234-240.

PDF(4922 KB)
PDF(4922 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2023, Vol. 47 ›› Issue (1) : 234-240. DOI: 10.12302/j.issn.1000-2006.202104024

Anatomical characteristics and radial variations in eight poplar clones/cultivars

Author information +
History +

Abstract

【Objective】 The aims of this study was to explore the anatomical characteristics and radial variations in eight poplar clones or cultivars and to analyze the influence of cloning and aging on anatomical characteristics. This study provides a theoretical basis for selecting poplar clones and cutting management of fast-growing plantations. 【Method】 Clone 50 (P. deltoides 55/65), cultivar ‘Zhonglin46’ (P. euramericana cv. Zhonglin46), ‘108’ (P. euramericana cv. Guariento), clone 36 (P. deltoides 2KEN8), clone N179 (P. nigra N179), cultivars Danhong (P. deltoides cv. ‘Danhong’), ‘Sangju’ (P. euramericana cv. Sangju), and ‘Nanyang’ (P. deltoides cv. Nanyang) which were about nine to ten years old were cut from Jiaozuo forest farm in Henan province, China. The samples were segregated and sectioned, and the characteristics of fiber, vessel, ray, and tissue proportions were measured using microscopic imaging. 【Result】 The average ring width, fiber length, and fiber width were 7.44-9.64 mm, 971.06 -1152.94 μm, and 15.38-19.84 μm. The mean ranges of vessel length, vessel width, and vessel frequency were 409.88-491.71 μm, 59.30-63.12 μm, and 44.31-51.84 inds/mm2. The double-wall thickness and lumen diameter ranges were 3.23-4.36 μm and 11.22-15.90 μm. The average ranges of fiber length to width ratio, wall to lumen ratio, lumen to width ratio, and microfibril angle were 56.85-78.91, 0.26-0.41, 0.72-0.82, and 16.34-19.16°. Proportions of fiber, vessel, and ray were 59.45%-67.7%, 21.40%-29.9%, and 10.20%-14.80%. The ray heights and width were 260.76-306.59 μm and 7.13-8.24 μm. From the pith to the bark, the ring width and vessel diameter first increased and then decreased, and the fiber length, fiber width, fiber length-to-width ratio, double wall thickness, vessel length, and ray height first increased along the radial direction and then stabilized. The microfibril angle, proportion of fiber, and proportion of rays first decreased along the radial direction and then stabilized; the vessel frequency decreased first and then increased, while the lumen diameter, wall-to-lumen ratio, lumen-to-width ratio, and ray width changed slightly along the radial direction. The ANOVAs analyses showed that clone and age had significant effects on anatomical characteristics. 【Conclusion】 Considering the growth rate and anatomical characteristics, Danhong showed the best properties, and the rotation age of the poplar clones was determined as 8-9 years.

Key words

poplar / clone / wood / anatomical characteristics / radial variation

Cite this article

Download Citations
LIU Yamei , LIU Shengquan , ZHOU Liang , et al . Anatomical characteristics and radial variations in eight poplar clones/cultivars[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2023, 47(1): 234-240 https://doi.org/10.12302/j.issn.1000-2006.202104024

References

[1]
FANG S Z, YANG W Z. Interconal and within-tree variation in wood properties of poplar clones[J]. J For Res, 2003, 14(4):263-268.DOI:10.1007/BF02857851.
[2]
PANDE P K. Variation in wood properties and growth in some clones of Populus deltoides Bartr.ex Marsh[J]. Am J Plant Sci, 2011, 2(5):644-649.DOI:10.4236/ajps.2011.25076.
[3]
GUO X Y, ZHANG X S. Performance of 14 hybrid poplar clones grown in Beijing,China[J]. Biomass Bioenergy, 2010, 34(6):906-911.DOI:10.1016/j.biombioe.2010.01.036.
[4]
GONG J R, ZHANG X S, HUANG Y M. Comparison of the performance of several hybrid poplar clones and their potential suitability for use in Northern China[J]. Biomass Bioenergy, 2011, 35(7):2755-2764.DOI:10.1016/j.biombioe.2011.03.012.
[5]
叶克林, 王金林. 人工林杨树木材的加工利用[J]. 木材工业, 2003, 17(1):5-7,10.
YE K L, WANG J L. Processing and utilization of poplar wood from plantations[J]. China Wood Ind, 2003, 17(1):5-7,10.DOI:10.19455/j.mcgy.2003.01.002.
[6]
李娟, 曹帮华, 王学东, 等. 杨树纸浆材无性系生长规律及造纸特性研究[J]. 山东林业科技, 2004, 34(5):1-3.
LI J, CAO B H, WANG X D, et al. Study on the growth law and papermaking characteristics of poplar pulp clones[J]. J Shandong For Sci Technol, 2004, 34(5):1-3.DOI:10.3969/j.issn.1002-2724.2004.05.001.
[7]
AHMED A K M, FU Z X, DING C J, et al. Growth and wood properties of a 38-year-old Populus simonii × P.nigra plantation established with different densities in semi-arid areas of northeastern China[J]. J For Res, 2020, 31(2):497-506.
[8]
ZOBEL B J, BUIJTENEN J P. Wood variation:its causes and control[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989.
[9]
IŠTOK I, SEFC B, HASAN M, et al. Fiber characteristics of white poplar (Populus alba L.) juvenile wood along the drava river[J]. Drvna Ind, 2017, 68(3):241-247.DOI:10.5552/drind.2017.1729.
[10]
HUDA A A S M, KOUBAA A, CLOUTIER A, et al. Variation of the physical and mechanical properties of hybrid poplar clones[J]. BioResources, 2014, 9(1):1456-1471.DOI:10.15376/biores.9.1.1456-1471.
[11]
PESZLEN I. Influence of age on selected anatomical properties of Populus clones[J]. IAWA J, 1994, 15(3):311-321.DOI:10.1163/22941932-90000613.
[12]
姜笑梅, 殷亚方, 浦上弘幸. 北京地区I-214杨树木材解剖特性与基本密度的株内变异及其预测模型[J]. 林业科学, 2003, 39(6):115-121.
JIANG X M, YIN Y F, HIROYUKI U. Variation within tree of wood anatomical properties and basic density of I-214 poplar in Beijing area and their relationship modelling equations[J]. Sci Silvae Sin, 2003, 39(6):115-121.
[13]
胡建军, 卢孟柱, 赵自成, 等. 杨树良种‘南杨’[J]. 林业科学, 2013, 49(7):188.
HU J J, LU M Z, ZHAO Z C, et al. An elite variety of Populus deltoides Nanyang[J]. Sci Silvae Sin, 2013, 49(7):188.
[14]
张春玲, 李淑梅, 赵自成, 等. 杨树新品种 ‘丹红杨’[J]. 林业科学, 2008, 44(1): 169.
ZHANG C L, LI S M, ZHAO Z C, et al. A new poplar variety Populus deltoides CL. ‘Danhong’[J]. Sci Silvae Sin, 2008, 44(1): 169. DOI: 10.11707/j.1001-7488.20080127.
[15]
CAVE I D. Theory of X-ray measurement of microfibril angle in wood[J]. Wood Sci Technol, 1997, 31(3):143-152.DOI:10.1007/BF00705881.
[16]
解孝满, 解荷锋, 张有慧, 等. 毛白杨无性系木材性状与生长性状的相关分析[J]. 山东林业科技, 2008, 38(2):34-35.
XIE X M, XIE H F, ZHANG Y H, et al. Correlation analysis between wood characters and growth characters of Populus tomentosa clones[J]. J Shandong For Sci Technol, 2008, 38(2):34-35.
[17]
吕义, 刘扬, 方升佐, 等. 南方型杨树无性系间生长性状和木材材性的遗传差异[J]. 南京林业大学学报(自然科学版), 2018, 42(6):20-26.
Y, LIU Y, FANG S Z, et al. Genetic variation in growth and wood properties for southern type poplar clones[J]. J Nanjing For Univ (Nat Sci Ed), 2018, 42(6):20-26.
[18]
PANDE P K, AZIZ M, UNIYAL S, et al. Variation in wood anatomical properties and specific gravity in relation to sexual dimorphism in Populus deltoides Bartr. ex Marsh[J]. CURR SCI INDIA, 2012, 102(11): 1580-1585.
[19]
PANDE P K, GAUTAM P, DHIMAN R C. Genetic analysis for growth and wood parameters in progenies of different clones of Populus deltoides Bartr[J]. J Indian Acad Wood Sci, 2014, 11(2):93-99.DOI:10.1007/s13196-014-0122-2.[LinkOut]
[20]
ŠEFC B, TRAJKOVIC J, GOVORCIN S, et al. Selected tree characteristics and wood properties of two poplar clones[J]. Wood Res, 2009, 54:15-22.
[21]
杨文忠. 杨树无性系微纤丝角的变异及其与材性的关系[D]. 南京: 南京林业大学, 2003.
YANG W Z. The variation pattern of microfibril angle,and its relationships with wood properties for poplar clones[D]. Nanjing: Nanjing Forestry University, 2003.
[22]
LASSERRE J P, MASON E G, WATT M S, et al. Influence of initial planting spacing and genotype on microfibril angle,wood density,fibre properties and modulus of elasticity in Pinus radiata D.Don corewood[J]. For Ecol Manag, 2009, 258(9):1924-1931.DOI:10.1016/j.foreco.2009.07.028.
[23]
HU J Q, QI Q, ZHAO Y L, et al. Unraveling the impact of Pto4CL1 regulation on the cell wall components and wood properties of perennial transgenic Populus tomentosa[J]. Plant Physiol Biochem, 2019, 139:672-680.DOI:10.1016/j.plaphy.2019.03.035.
[24]
PANSHIN A J, DE ZEEUW C. Textbook of wood technology:structure,identification,properties, and uses of the commercial woods of the United States and Canada[M]. 4th ed. New York: McGraw-Hill, 1980.
[25]
AI J, TSCHIRNER U. Fiber length and pulping characteristics of switchgrass,alfalfa stems,hybrid poplar and willow biomasses[J]. Bioresour Technol, 2010, 101(1):215-221.DOI:10.1016/j.biortech.2009.07.090.
[26]
武恒, 査朝生, 王传贵, 等. 人工林杨树12个无性系木材纤维形态特征及变异[J]. 东北林业大学学报, 2011, 39(2):8-10,27.
WU H, ZHA C S, WANG C G, et al. Morphological features of wood fiber and its variation for twelve clones of poplar plantations[J]. J Northeast For Univ, 2011, 39(2):8-10, 27.DOI:10.13759/j.cnki.dlxb.2011.02.019.
[27]
VEGA M, HAMILTON M, DOWNES G, et al. Radial variation in modulus of elasticity,microfibril angle and wood density of veneer logs from plantation-grown Eucalyptus nitens[J]. Ann For Sci, 2020, 77(3):65.DOI:10.1007/s13595-020-00961-1.
[28]
江泽慧, 姜笑梅. 木材结构与其品质特性的相关性[M]. 北京: 科学出版社, 2008.
JIANG Z H, JIANG X M. Correlation between wood structure and its quality characteristics[M]. Beijing: Science Press, 2008.
[29]
鲍甫成. 中国主要人工林树种木材性质[M]. 北京: 中国林业出版社, 1998.
BAO F C. Wood properties of main tree species from plantation in China[M]. Beijing: China Forestry Publishing House, 1998.
[30]
黄祥丰, 陈邦清, 伍遇普, 等. 我国杨树速生丰产林合理轮伐期研究概况[J]. 林业科技通讯, 2021, (5):49-56.
HUANG X F, CHEN B Q, WU Y P, et al. Research survey on reasonable rotation period of poplar fast-growing forests and high-yielding in China[J]. For Sci Technol, 2021, (5):49-56.DOI:10.13456/j.cnki.lykt.2020.06.01.0005.
PDF(4922 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/