Application of structural equation model in growth of Larix gmelinii stand

GAO Yu, LI Jing, LIU Yang, WU Yahan, GONG Jiaxing, XIN Qirui

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2023, Vol. 47 ›› Issue (1) : 38-46.

PDF(1871 KB)
PDF(1871 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2023, Vol. 47 ›› Issue (1) : 38-46. DOI: 10.12302/j.issn.1000-2006.202104028

Application of structural equation model in growth of Larix gmelinii stand

Author information +
History +

Abstract

【Objective】 Structural equation modelling (SEM) was used to determine the effects of climate, soil, and altitude on growth indicators and pathway relationships in Xing’an larch (Larix gmelinii) forests. 【Method】 The annual mean temperature, annual mean precipitation, solar radiation, soil total nitrogen content, soil organic carbon density, and altitude were selected as influencing factors to explore the relationships between aboveground biomass, underground biomass, and tree height and these underlying factors. A structural equation model of climate, soil, and altitude was constructed using AMOS 21.0 software to measure the growth of Larix gmelinii stand. 【Result】 The aboveground and underground biomass of Larix gmelinii first increased and then decreased with an increase in altitude and annual mean precipitation, and the tree height increased with increasing altitude. The aboveground and underground biomass increased with an increase in soil organic carbon density. The total effect coefficient of altitude on the growth of Larix gmelinii was positive (0.200), and the direct effect (0.224) of altitude on the growth of Larix gmelinii was greater than the indirect effect (-0.024). The total effect coefficient of the climatic factors on the growth of Larix gmelinii was negative, at -0.771. The total influence coefficient of soil factors on the growth of Larix gmelinii was -0.216, which means these factors can slightly inhibit the growth of Larix gmelinii. 【Conclusion】 According to the path coefficient of the structural equation model, the absolute value of the total influence coefficient of climate factors was the largest, followed by that of soil and altitude. The static growth of Larix gmelinii forest is mainly restricted by climatic factors, which has guiding significance for predicting and evaluating changes in forest growth at high latitudes under the condition of global climate change.

Key words

Larix gmelinii / influence coefficient / climate factor / soil factor / elevation / aboveground and belowground biomass / tree height / structural equation model

Cite this article

Download Citations
GAO Yu , LI Jing , LIU Yang , et al . Application of structural equation model in growth of Larix gmelinii stand[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2023, 47(1): 38-46 https://doi.org/10.12302/j.issn.1000-2006.202104028

References

[1]
程开明. 结构方程模型的特点及应用[J]. 统计与决策, 2006(10):22-25.
CHENG K M. Characteristics and application of structural equation model[J]. Stat Decis, 2006(10):22-25.DOI:10.3969/j.issn.1002-6487.2006.10.008.
[2]
张娅, 孙舒蕊, 张文会, 等. 基于结构方程模型的居住区停车泊位共享意愿研究[J]. 森林工程, 2021, 37(6): 143-150, 158.
ZHANG Y, SUN S R, ZHANG W H, et al. Parking space sharing willingness research in a residential area based on structural equation model[J]. Forest Engineering, 2021, 37(6): 143-150, 158.DOI:10.16270/j.cnki.slgc.2021.06.016.
[3]
舒树淼, 赵洋毅, 段旭, 等. 基于结构方程模型的云南松次生林林木多样性影响因子[J]. 东北林业大学学报, 2015, 43(10):63-67.
SHU S M, ZHAO Y Y, DUAN X, et al. Impact factors of forest diversity in Yunnan pine secondary forest based on structural equation model[J]. J Northeast For Univ, 2015, 43(10):63-67.DOI:10.13759/j.cnki.dlxb.2015.10.007.
[4]
楚春晖, 佘济云, 陈冬洋, 等. 大围山杉木林林分生长与影响因子耦合分析[J]. 西南林业大学学报, 2016, 36(2):108-112.
CHU C H, SHE J Y, CHEN D Y, et al. Coupling analysis of growth and influencing factors of Cunninghamia lanceolata[J]. J Southwest For Univ, 2016, 36(2):108-112.DOI:10.11929/j.issn.2095-1914.2016.02.018.
[5]
黄兴召, 许崇华, 徐俊, 等. 利用结构方程解析杉木林生产力与环境因子及林分因子的关系[J]. 生态学报, 2017, 37(7):2274-2281.
HUANG X Z, XU C H, XU J, et al. Structural equation model analysis of the relationship between environmental and stand factors and net primary productivity in Cunninghamia lanceolata forests[J]. Acta Ecol Sin, 2017, 37(7):2274-2281.DOI:10.5846/stxb201512132482.
[6]
王冬至, 张志东, 牟洪香, 等. 结构方程模型在落叶松林经营中的应用[J]. 北京林业大学学报, 2015, 37(3):69-75.
WANG D Z, ZHANG Z D, MU H X, et al. Applications of structural equation model in the management of Larix principis-rupprechtii plantations[J]. J Beijing For Univ, 2015, 37(3):69-75.DOI:10.13332/j.1000-1522.20140326.
[7]
KANG M Y, DAI C, JI W Y, et al. Biomass and its allocation in relation to temperature,precipitation,and soil nutrients in Inner Mongolia grasslands,China[J]. PLoS One, 2013, 8(7):e69561.DOI:10.1371/journal.pone.0069561.
[8]
SHA Z Y, XIE Y C, TAN X C, et al. Assessing the impacts of human activities and climate variations on grassland productivity by partial least squares structural equation modeling(PLS-SEM)[J]. J Arid Land, 2017, 9(4):473-488.
[9]
ZHONG Q M, ZHANG S R, CHEN H L, et al. The influence of climate,topography,parent material and vegetation on soil nitrogen fractions[J]. CATENA, 2019, 175:329-338.DOI:10.1016/j.catena.2018.12.027.
[10]
DAI L J, GE J S, WANG L Q, et al. Influence of soil properties,topography,and land cover on soil organic carbon and total nitrogen concentration:a case study in Qinghai-Tibet Plateau based on random forest regression and structural equation modeling[J]. Sci Total Environ, 2022, 821:153440.DOI:10.1016/j.scitotenv.2022.153440.
[11]
KITAGAMI Y, MATSUDA Y. Temperature changes affect multi-trophic interactions among pines,mycorrhizal fungi,and soil nematodes in a microcosm experiment[J]. Pedobiologia, 2020, 78:150595.DOI:10.1016/j.pedobi.2019.150595.
[12]
SUTTON-GRIER A E, KENNEY M A, RICHARDSON C J. Examining the relationship between ecosystem structure and function using structural equation modelling:a case study examining denitrification potential in restored wetland soils[J]. Ecol Model, 2010, 221(5):761-768.DOI:10.1016/j.ecolmodel.2009.11.015.
[13]
KIM T N, HOLT R D. The direct and indirect effects of fire on the assembly of insect herbivore communities:examples from the Florida scrub habitat[J]. Oecologia, 2012, 168(4):997-1012.DOI:10.1007/s00442-011-2130-x.
[14]
靳天恩, 马彦红, 李善文. 影响人工油松林生长的相关因子的研究[J]. 防护林科技, 1999(3):12-14,59.
JIN T E, MA Y H, LI S W. Study on the related factors affecting the growth of artificial Pinus tabulaeformis forest[J]. Prot For Sci Technol, 1999(3):12-14, 59.DOI:10.13601/j.issn.1005-5215.1999.03.005.
[15]
张长现. 不同生态条件下五脉绿绒蒿生物碱与黄酮成分研究[D]. 兰州: 中国科学院西北高原生物研究所, 2009.
ZHANG C X. Studies on alkaloids and flavonoids of Meconopsis pentaphylla under different ecological conditions[D]. Lanzhou: Institute of Northwest Plateau Biology, Chinese Academy of Sciences, 2009.
[16]
王文杰, 孙伟, 邱岭, 等. 不同时间尺度下兴安落叶松树干液流密度与环境因子的关系[J]. 林业科学, 2012, 48(1):77-85.
WANG W J, SUN W, QIU L, et al. Relations between stem sap flow density of Larix gmelinii and environmental factors under different temporal scale[J]. Sci Silvae Sin, 2012, 48(1):77-85.DOI:10.11707/j.1001-7488.20120113.
[17]
台秉洋. 大兴安岭北部高山兴安落叶松树木生长与气候变化的关系[D]. 哈尔滨: 东北林业大学, 2012.
TAI B Y. The relationship between the growth of Larix gmelinii in the north alpine of great Khingan and the climate change[D]. Harbin: Northeast Forestry University, 2012.
[18]
孙振静, 赵慧颖, 朱良军, 等. 大兴安岭北部不同降水梯度下兴安落叶松生长对升温的响应差异[J]. 北京林业大学学报, 2019, 41(6):1-14.
SUN Z J, ZHAO H Y, ZHU L J, et al. Differences in response of Larix gmelinii growth to rising temperature under different precipitation gradients in northern Daxing’an Mountains of northeastern China[J]. J Beijing For Univ, 2019, 41(6):1-14.DOI:10.13332/j.1000-1522.20190007.
[19]
高涛. 大气环流和海温变化对兴安落叶松生长的气候影响:以根河地区为例[D]. 呼和浩特: 内蒙古农业大学, 2013.
GAO T. Climate influence of the atmospheric circulation and sea surface temperature on Larix gmelinii(rupr.) Rupr.growth-focus on Genhe region as an example[D]. Hohhot: Inner Mongolia Agricultural University, 2013.
[20]
ERDENEBILEG E, YE X H, WANG C W, et al. Positive and negative effects of UV irradiance explain interaction of litter position and UV exposure on litter decomposition and nutrient dynamics in a semi-arid dune ecosystem[J]. Soil Biol Biochem, 2018, 124:245-254.DOI:10.1016/j.soilbio.2018.06.013.
[21]
KUJANSUU J, YASUE K, KOIKE T, et al. Climatic responses of tree-ring widths of Larix gmelinii on contrasting north-facing and south-facing slopes in central Siberia[J]. J Wood Sci, 2007, 53(2):87-93.DOI:10.1007/s10086-006-0837-9.
[22]
罗云建, 王效科, 逯非. 中国主要林木生物量模型手册[M]. 北京: 中国林业出版社, 2015.
LUO Y J, WANG X K, LU F. Comprehensive database of biomass regressions for China’s tree species[M]. Beijing: China Forestry Publishing House, 2015.
[23]
吴明隆. 结构方程模型:AMOS的操作与应用万卷方法统计分析方法丛书[M]. 重庆: 重庆大学出版社, 2009.
WU M L. Structural equation modeling:operation and application of AMOS:Series of 10,000 volumes of statistical analysis methods[M]. Chongqing: Chongqing University Press, 2009.
[24]
何晓群. 多元统计分析[M]. 北京: 中国人民大学出版社, 2004.
HE X Q. Multivariate statistical analysis[M]. Beijing: China Renmin University Press, 2004.
[25]
侯杰泰. 结构方程模型及其应用[M]. 北京: 教育科学出版社, 2004.
HOU J T. Structural equation model and its applications[M]. Beijing: Educational Science Publishing House, 2004.
[26]
周健平. 基于结构方程模型的林分特征因子间耦合关系分析[D]. 哈尔滨: 东北林业大学, 2015.
ZHOU J P. An analysis of the coupling relationship of stand characteristic factors based on structural equation model[D]. Harbin: Northeast Forestry University, 2015.
[27]
HOOPER D, COUGHLAN J, MULLEN M R. Structural equation modelling:guidelines for determining model fit[J]. Electron J Bus Res Methods, 2008, 6(1):53-60.
[28]
孟军贵, 铁牛. 气温、降水对兴安落叶松生长的影响研究[J]. 科学技术创新, 2019(18):143-144.
MENG J G, TIE N. Effects of temperature and precipitation on growth of Larix gmelinii[J]. Sci Technol Innov, 2019(18):143-144.
[29]
白学平. 海拔对大兴安岭落叶松径向生长与气候响应的影响研究[D]. 沈阳: 沈阳农业大学, 2019.
BAI X P. The study of altitude effects on radial growth and climate response of Larix gmelinii in the great Xing’an Mountains[D]. Shenyang: Shenyang Agricultural University, 2019.
[30]
杨志香, 周广胜, 殷晓洁, 等. 中国兴安落叶松天然林地理分布及其气候适宜性[J]. 生态学杂志, 2014, 33(6):1429-1436.
YANG Z X, ZHOU G S, YIN X J, et al. Geographic distribution of Larix gmelinii natural forest in China and its climatic suitability[J]. Chin J Ecol, 2014, 33(6):1429-1436.DOI:10.13292/j.1000-4890.2014.0122.
PDF(1871 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/