
Phenotypic traits differentiations and classifications of the F1 hybrid progenies of Populus deltoides × P. cathayana at the seedling stage
ZHANG Qingyuan, TIAN Ye, WANG Miao, ZHAI Zheng, ZHOU Shichao
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (5) : 40-48.
Phenotypic traits differentiations and classifications of the F1 hybrid progenies of Populus deltoides × P. cathayana at the seedling stage
【Objective】 The variations in growth and phenotypic traits of the F1 hybrid progenies of Populus deltoides ‘Lux’ × P. cathayana were investigated at the cutting-seedling stage to interpret their biological and ecological significance, and to classify the F1 hybrid clones in order to evaluate the resistance of clones and their target uses comprehensively. The results can provide basic information for matching suitable poplar clones with afforestation sites under the background of climate change such as frequent drought. 【Method】 Using the cuttings with one-year stem and three-year root of 36 F1 hybrid progenies in Bancheng-Malanghu Forest Farm of Sihong City, Jiangsu Province, 17 traits on seedling growth, leaf morphology, stomatal properties, and lateral branching characteristics were investigated and the variations of each trait were analyzed. Based on the trait variations, the 36 hybrid clones were categorized and evaluated for potential use on afforestation selection on different sites. 【Result】 The 36 F1 hybrid progeny showed a significant variation on growth and phenotypic traits, expressing continuous normal distributions for each trait in general. Among all the traits, the number of lateral branches and the germination ratio of lateral buds showed the largest coefficients of variations as 102.0% and 93.5%, respectively. A correlation analysis showed that the traits related to growth were positively correlated with those related to leaf morphology and branching characteristics significantly; however, no significant correlation was found with stomatal properties. The single leaf area and dry mass were negatively correlated with the leaf length-to-width ratio, and positively correlated with the upper-to-lower ratio of leaf stomatal density significantly. The leaf length-to-width ratio was also negatively correlated with the relative length of petiole (the ratio of petiole length to leaf length) and the upper-to-lower ratio of leaf stomatal density significantly. Single leaf area and dry mass showed a constant scaling relation for all the 36 clones, with an allometric index of 1.007 4, which was not related to branching characteristics. Using a principal component analysis, the 36 F1 hybrid clones were classified into eight categories with specific properties on growth, branching and potential drought resistance. 【Conclusion】The F1 hybrid progenies of P. deltoides × P. cathayana have abundant variations in growth and phenotypic traits, which provides phenotype-function information for clone choice for afforestation under changing climate and site conditions at an early stage. The four clones in category Ⅳ have highest growth performances, few lateral branches, and phenotypic traits such as leaf morphology and stomatal characteristics that show drought tolerance, and are suitable for further adaptive afforestation experiments in arid plains or mountainous areas.
southern type poplar / hybrid progeny / phenotypic traits / leaf morphology / allometric scaling analysis / branching characteristics / stomatal density
[1] |
|
[2] |
国家林业和草原局. 中国森林资源报告(2014-2018)[M]. 北京: 中国林业出版社, 2019.
National Forestry and Grassland Administration. China forest resources report (2014-2018)[M]. Beijing: China Forestry Publishing House, 2019.
|
[3] |
陈良华, 赖娟, 胡相伟, 等. 接种丛枝菌根真菌对受镉胁迫美洲黑杨雌、雄株光合生理的影响[J]. 植物生态学报, 2017, 41(4): 480-488.
|
[4] |
中华人民共和国中央人民政府. 中共中央国务院关于全面推进乡村振兴加快农业农村现代化的意见[EB/OL].(2021-02-21). http://www.gov.cn/xinwen/2021-02/21/content_5588098.htm.
|
[5] |
|
[6] |
李善文, 张志毅, 何承忠, 等. 中国杨树杂交育种研究进展[J]. 世界林业研究, 2004, 17(2): 37-41.
|
[7] |
王明庥, 黄敏仁, 吕士行, 等. 黑杨派新无性系研究: Ⅰ、苗期测定[J]. 南京林业大学学报, 1987, 11(2): 1-12.
|
[8] |
符毓秦, 刘玉媛, 李均安, 等. 美洲黑杨杂种无性系: 陕林3、4号杨的选育[J]. 陕西林业科技, 1990(3): 1-9, 13.
|
[9] |
庞金宣, 郑世锴, 刘国兴, 等. 窄冠型杨树新品种的选育[J]. 林业科技通讯, 2001(4): 8-9.
|
[10] |
张玉波, 王庆斌, 李淑玲, 等. 牡丹江地区杨树遗传改良现状、问题及对策[J]. 东北林业大学学报, 2002, 30(4): 65-66.
|
[11] |
姬慧娟. 丹红杨与小叶杨杂交子代苗期抗旱相关性状遗传分析[D]. 北京: 中国林业科学研究院, 2015.
|
[12] |
李娟, 郭斌, 安新民. 欧美杨与藏川杨杂交子代苗期性状QTLs定位分析[J]. 西南林业大学学报, 2016, 36(5): 10-15.
|
[13] |
|
[14] |
|
[15] |
潘映红. 论植物表型组和植物表型组学的概念与范畴[J]. 作物学报, 2015, 41(2): 175-186.
|
[16] |
|
[17] |
刘静涵, 刘宣劭, 金昊, 等. 美洲黑杨与青杨及其杂交子代的叶角度变化与解剖结构[J]. 北京林业大学学报, 2018, 40(2): 11-21.
|
[18] |
|
[19] |
|
[20] |
杨冬梅, 毛林灿, 彭国全. 常绿和落叶阔叶木本植物小枝内生物量分配关系研究: 异速生长分析[J]. 植物研究, 2011, 31(4): 472-477.
|
[21] |
|
[22] |
|
[23] |
董玉峰. 杨树纸浆材优良无性系选择及高效群体结构研究[D]. 泰安: 山东农业大学, 2014.
|
[24] |
|
[25] |
罗敬. 美洲黑杨杂交试验及杂种苗期重要性状变异研究[D]. 南京: 南京林业大学, 2008.
|
[26] |
黄文娟, 李志军, 杨赵平, 等. 胡杨异形叶结构型性状及其与胸径关系[J]. 生态学杂志, 2010, 29(12): 2347-2352.
|
[27] |
|
[28] |
|
[29] |
|
[30] |
高暝, 丁昌俊, 苏晓华, 等. 美洲黑杨及其杂种F1无性系光合特性的研究[J]. 林业科学研究, 2014, 27(6): 721-728.
|
[31] |
王进, 朱江, 艾训儒, 等. 湖北星斗山地形变化对不同生活型植物叶功能性状的影响[J]. 植物生态学报, 2019, 43(5): 447-457.
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
晏新安, 符毓秦, 刘玉媛. 美洲黑杨杂种无性系叶片解剖及同工酶分析[J]. 陕西林业科技, 1989(4): 5-9.
|
[37] |
李春萍, 李刚, 肖春旺. 异速生长关系在陆地生态系统生物量估测中的应用[J]. 世界科技研究与发展, 2007, 29(2): 51-57.
|
/
〈 |
|
〉 |