JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (3): 91-98.doi: 10.12302/j.issn.1000-2006.202105010
Previous Articles Next Articles
LU Zhiguo(), HUA Jianfeng*(
), YIN Yunlong, SHI Qin
Received:
2021-05-08
Accepted:
2021-10-14
Online:
2022-05-30
Published:
2022-06-10
Contact:
HUA Jianfeng
E-mail:luzhiguo@jib.ac.cn;jfhua@cnbg.net
CLC Number:
LU Zhiguo, HUA Jianfeng, YIN Yunlong, SHI Qin. Effects of nitrogen form on growth and physiological characteristics of Hibiscus hamabo under salt stress[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(3): 91-98.
Table 1
Properties of different salt soils"
处理 treatment | pH | 电导率/ (mS·cm-1) electrical conductivity | 总氮含量/ (mg·kg-1) total nitrogen content | 有机质 质量分数/% organic matter content | 速效钾含量/ (mg·kg-1) available phosphorus content | 速效磷含量/ (mg·kg-1) available potassium content |
---|---|---|---|---|---|---|
CK | 7.7±0.6 a | 0.28±0.02 d | 743.69±26.28 a | 0.91±0.02 a | 204.25±18.12 c | 2.71±0.21 c |
L | 7.8±0.4 a | 0.98±0.04 c | 516.27±17.33 b | 0.87±0.03 a | 224.37±23.13 c | 4.50±0.27 a |
M | 8.0±0.6 a | 1.32±0.06 b | 329.39±16.47 c | 0.64±0.02 b | 268.17±36.14 b | 4.25±0.32 a |
H | 8.1±0.4 a | 2.71±0.13 a | 147.58±11.37 d | 0.54±0.01 b | 457.29±39.36 a | 3.59±0.20 b |
Table 2
Effects and interaction of nitrogen form on the growth and biomass of Hibiscus hamabo under different salt stress"
处理 treatment | 株高/cm plant height | 地径/mm basal diameter | 生物量/g biomass | |||
---|---|---|---|---|---|---|
叶 leaf | 茎 stem | 根 root | 整株 total | |||
CK | 59.0±4.2 Ba | 12.5±0.93 Aa | 7.1±0.35 Aa | 22.7±1.2 Aa | 16.5±1.2 Ca | 46.3±5.6 Ba |
CK+NH | 68.7±3.8 Aa | 12.7±0.68 Aa | 7.3±0.24 Aa | 24.6±1.6 Aa | 20.9±2.2 Ba | 52.8±4.3 Aa |
CK+NO | 63.0±4.3 ABa | 12.8±0.76 Aa | 6.6±0.63 Aa | 19.7±1.5 Bb | 23.1±2.6 Aab | 49.4±3.9 Bb |
L | 57.7±6.3 Ba | 11.8±0.39 Ba | 6.8±0.56 Aa | 20.4±2.1 Ba | 18.5±1.7 Ba | 45.7±2.8 Ba |
L+NH | 64.2±2.6 Aab | 11.8±0.48 Ba | 5.4±0.46 Bb | 22.0±2.6 ABa | 18.6±1.3 Ba | 46.0±3.7 Bb |
L+NO | 59.2±2.9 Bb | 13.1±0.96 Aa | 6.6±0.31 Aa | 25.6±3.4 Aa | 26.8±2.9 Aa | 59.0±6.3 Aa |
M | 46.5±3.3 Bb | 9.9±0.35 Bb | 4.4±0.21 Ab | 14.0±1.5 Bb | 16.4±1.7 Ba | 32.8±2.7 Cb |
M+NH | 60.0±5.1 Ab | 10.9±0.55 Ab | 4.6±0.31 Ab | 19.6±1.6 Ab | 14.4±1.3 Bb | 38.7±2.3 Bc |
M+NO | 63.5±5.3 Aa | 11.3±0.36 Ab | 4.8±0.27 Ab | 18.1±1.7 Ab | 20.2±2.3 Ab | 43.1±2.1 Ac |
氮素形态 nirtogen form | 0.024* | 0.009** | 0.031* | 0.033* | 0.024* | 0.015* |
盐分 salt | 0.002** | 0.019* | 0.076ns | 0.021* | 0.059ns | 0.043* |
氮素形态×盐分 nirtogen form×salt | 0.012* | 0.005** | 0.066ns | 0.018* | 0.017* | 0.024* |
Table 3
Effects and interaction of N form on the chlorophyll content and photosynthetic characteristics of H. hamabo under different salt stress"
处理 treatment | Chl/ (mg·g-1) | Pn/ (μmol·m-2·s-1) | Gs/ (mol·m-2·s-1) | Tr/ (mmol·m-2·s-1) | WUE/ (mmol·mol-1) |
---|---|---|---|---|---|
CK | 0.81±0.07 Bb | 11.8±0.95 Ba | 0.15±0.01 Ba | 2.8±0.16 Ba | 4.2±0.32 Aa |
CK+NH | 1.17±0.09 Ab | 14.2±1.10 Aa | 0.25±0.01 Aa | 3.5±0.28 Aa | 4.0±0.28 Aa |
CK+NO | 1.24±0.10 Ab | 13.9±1.00 Aa | 0.22±0.01 Aa | 3.4±0.22 Aa | 4.0±0.32 Ab |
L | 0.83±0.06 Bb | 9.3±0.56 Cb | 0.11±0.01 Bb | 2.7±0.13 Aa | 3.4±0.28 Cb |
L+NH | 1.53±0.11 Aa | 11.2±0.86 Bb | 0.13±0.01 Bb | 2.8±0.18 Ab | 4.0±0.26 Ba |
L+NO | 1.48±0.12 Aa | 13.5±1.00 Aa | 0.20±0.01 Aa | 2.9±0.13 Aab | 4.6±0.33 Aa |
M | 1.29±0.09 Aa | 7.5±0.51 Cc | 0.05±0.00 Cc | 1.8±0.11 Bb | 4.1±0.27 Ba |
M+NH | 1.42±0.12 Aa | 10.2±0.83 Bb | 0.08±0.00 Bc | 2.1±0.13 Bc | 4.8±0.36 Ab |
M+NO | 1.47±0.13 Aa | 12.5±0.96 Aa | 0.17±0.00 Ab | 2.6±0.15 Ab | 4.8±0.45 Aa |
氮素形态nirtogen form | 0.018* | 0.012* | 0.016* | 0.004* | 0.006* |
盐分salt | 0.036* | 0.011* | 0.002** | 0.077* | 0.036* |
氮素形态×盐分 nirtogen form×salt | 0.023* | 0.027* | 0.001** | 0.071* | 0.043* |
Fig.1
Effects and interaction of N form on the contents of ammonium, nitrate, and the total nitrogen of H. hamabo under different salt stress All data were expressed as mean values. Different upper case letters meant significant differences between the same salt treatments and different nitrogen treatments at 0.05 level. Different lowercase letters mean significant differences between the same nitrogen treatments and different salt treatments at 0. 05 level."
Table 4
Effects and interaction of N form on the contents of K+ in each organ of H. hamabo under different salt stress"
处理 treatment | K+含量/(mg·g-1)K+ content | |||
---|---|---|---|---|
叶 leaf | 茎 stem | 根 root | 整株 total | |
CK | 11.2±1.30 Aa | 7.2±0.62 Aa | 9.7±0.61 Aa | 28.1±3.2 Aa |
CK+NH | 9.2±0.89 Ba | 5.5±0.41 Ba | 6.4±0.51 Ba | 21.1±2.2 Ba |
CK+NO | 11.6±0.97 Aa | 7.3±0.63 Aa | 8.8±0.33 Aa | 27.7±2.6 Aa |
L | 8.9±0.67 Ab | 7.4±0.55 Aa | 6.5±0.28 Ab | 22.8±1.9 Ab |
L+NH | 6.2±0.52 Bb | 5.7±0.41 Ba | 5.1±0.33 Bb | 17.0±1.8 Bb |
L+NO | 8.1±0.55 Ab | 7.2±0.33 Aa | 7.2±0.42 Ab | 22.5±2.3 Ab |
M | 6.5±0.43 Ac | 6.5±0.44 Aa | 4.7±0.36 Ac | 17.7±1.2 Ac |
M+NH | 5.4±0.39 Ab | 5.7±0.36 Aa | 4.4±0.31 Ac | 15.5±1.5 Bb |
M+NO | 5.9±0.44 Ac | 6.9±0.67 Aa | 4.8±0.36 Ac | 17.6±1.8 Ac |
氮素形态 nirtogen form | 0.119ns | 0.364ns | 0.024* | 0.011* |
盐分 salt | 0.002** | 0.017* | 0.005** | 0.022* |
氮素形态×盐分 nirtogen form×salt | 0.019* | 0.324ns | 0.009** | 0.007** |
[1] | 郭金博, 施钦, 熊豫武, 等. 盐碱混合胁迫对‘中山杉406’生长及光合特性的影响[J]. 南京林业大学学报(自然科学版), 2019, 43(1):61-68. |
GUO J B, SHI Q, XIONG Y W, et al. Effects of salt-alkaline mixed stress on growth and photosynthetic characteristics of Taxodium hybrid ‘Zhongshanshan 406’[J]. J Nanjing For Univ (Nat Sci Ed), 2019, 43(1):61-68.DOI: 10.3969/j.issn.1000-2006.201805078.
doi: 10.3969/j.issn.1000-2006.201805078 |
|
[2] | 叶查龙, 颜斌, 申婷婷, 等. 转BpmiR156基因白桦株系的耐盐性分析[J]. 南京林业大学学报(自然科学版), 2020, 44(6):147-151. |
YE Z L, YAN B, SHEN T T, et al. Analysis of salt tolerance in BpmiR156 overexpression Betula platyphylla[J]. J Nanjing For Univ (Nat Sci Ed), 2020, 44(6):147-151.DOI: 10.3969/j.issn.1000-2006.201908006.
doi: 10.3969/j.issn.1000-2006.201908006 |
|
[3] |
HASSAN M J, SHAFI M, ZHANG G P, et al. The growth and some physiological responses of rice to Cd toxicity as affected by nitrogen form[J]. Plant Growth Regul, 2008, 54(2):125-132.DOI: 10.1007/s10725-007-9235-6.
doi: 10.1007/s10725-007-9235-6 |
[4] | 王磊, 隆小华, 郝连香, 等. 氮素形态对盐胁迫下菊芋幼苗PSⅡ光化学效率及抗氧化特性的影响[J]. 草业学报, 2012, 21(1):133-140. |
WANG L, LONG X H, HAO L X, et al. Effects of nitrogen form on the photochemical efficiency of PSⅡ and antioxidant characteristics of Jerusalem artichoke seedling under salt stress[J]. Acta Prataculturae Sin, 2012, 21(1):133-140. | |
[5] |
NATHAWAT N S, KUHAD M S, GOSWAMI C L, et al. Interactive effects of nitrogen source and salinity on growth indices and ion content of Indian mustard[J]. J Plant Nutr, 2007, 30(4):569-598.DOI: 10.1080/01904160701209329.
doi: 10.1080/01904160701209329 |
[6] |
SEHAR Z, MASOOD A, KHAN N A. Nitric oxide reverses glucose-mediated photosynthetic repression in wheat (Triticum aestivum L.) under salt stress[J]. Environ Exp Bot, 2019, 161:277-289.DOI: 10.1016/j.envexpbot.2019.01.010.
doi: 10.1016/j.envexpbot.2019.01.010 |
[7] | 耿杰, 张琳捷, 岳小红, 等. 铵态氮和硝态氮调节盐胁迫豌豆幼苗生长和根系呼吸的作用[J]. 植物营养与肥料学报, 2018, 24(4):1001-1009. |
GENG J, ZHANG L J, YUE X H, et al. Effect of N H 4 +-N and N O 3 -[J]. J Plant Nutr Fertil, 2018, 24(4):1001-1009.DOI: 10.11674/zwyf.17314.
doi: 10.11674/zwyf.17314 |
|
[8] | 张晓果, 王丹英, 计成林, 等. 水稻氮素吸收利用研究进展[J]. 中国稻米, 2015, 21(5):13-19. |
ZHANG X G, WANG D Y, JI C L, et al. Nitrogen absorption and utilization on rice[J]. China Rice, 2015, 21(5):13-19.DOI: 10.3969/j.issn.1006-8082.2015.05.003.
doi: 10.3969/j.issn.1006-8082.2015.05.003 |
|
[9] | 刘梅, 郑青松, 刘兆普, 等. 盐胁迫下氮素形态对油菜和水稻幼苗离子运输和分布的影响[J]. 植物营养与肥料学报, 2015, 21(1):181-189. |
LIU M, ZHENG Q S, LIU Z P, et al. Effects of nitrogen forms on transport and accumulation of ions in canola(B.napus L.) and rice(Oryza sativa L.)under saline stress[J]. J Plant Nutr Fertil, 2015, 21(1):181-189. | |
[10] | 李会欣, 吴明, 方炎明, 等. NaCl胁迫对海滨木槿叶片生理特性的影响[J]. 植物资源与环境学报, 2010, 19(3):55-61. |
LI H X, WU M, FANG Y M, et al. Effect of NaCl stress on physiological characteristics of Hibiscus hamabo leaf[J]. J Plant Resour Environ, 2010, 19(3):55-61.DOI: 10.3969/j.issn.1674-7895.2010.03.009.
doi: 10.3969/j.issn.1674-7895.2010.03.009 |
|
[11] | 王小雪, 孙海菁, 刘芸, 等. 浓硫酸处理对海滨木槿10个家系种子萌发的影响[J]. 应用生态学报, 2012, 23(11):2968-2974. |
WANG X X, SUN H J, LIU Y, et al. Effects of treating with concentrated sulfuric acid on the seed germination of ten Hibiscus hamabo provenance families[J]. Chin J Appl Ecol, 2012, 23(11):2968-2974.DOI: 10.13287/j.1001-9332.2012.0449.
doi: 10.13287/j.1001-9332.2012.0449 |
|
[12] | 施钦, 包学文, 华建峰, 等. 干旱胁迫及复水对海滨木槿光合作用和生理特性的影响[J]. 应用生态学报, 2019, 30(8):2600-2606. |
SHI Q, BAO X W, HUA J F, et al. Effects of drought stress and recovery on photosynthesis and physiological characteristics of Hibiscus hamabo[J]. Chin J Appl Ecol, 2019, 30(8):2600-2606.DOI: 10.13287/j.1001-9332.201908.020.
doi: 10.13287/j.1001-9332.201908.020 |
|
[13] | 俞慈英, 徐树华. 海滨木槿的驯化及开发利用前景[J]. 林业科学研究, 1999, 12(2):210-213. |
YU C Y, XU S H. Domestication and exploiting perspective of Hibiscus hamabo[J]. For Res, 1999, 12(2):210-213. | |
[14] | 李红强, 姚荣江, 杨劲松, 等. 盐渍化对农田氮素转化过程的影响机制和增效调控途径[J]. 应用生态学报, 2020, 31(11):3915-3924. |
LI H Q, YAO R J, YANG J S, et al. Influencing mechanism of soil salinization on nitrogen transformation processes and efficiency improving methods for high efficient utilization of nitrogen in salinized farmland[J]. Chin J Appl Ecol, 2020, 31(11):3915-3924.DOI: 10.13287/j.1001-9332.202011.023.
doi: 10.13287/j.1001-9332.202011.023 |
|
[15] |
DOMENICANO S, COLL L, MESSIER C, et al. Nitrogen forms affect root structure and water uptake in the hybrid poplar[J]. New For, 2011, 42(3):347-362.DOI: 10.1007/s11056-011-9256-x.
doi: 10.1007/s11056-011-9256-x |
[16] | 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000. |
LU R K. Analytical methods of soil agricultural chemistry[M]. Beijing: China Agriculture Scientech Press, 2000. | |
[17] | 吕伟仙, 葛滢, 吴建之, 等. 植物中硝态氮、氨态氮、总氮测定方法的比较研究[J]. 光谱学与光谱分析, 2004, 24(2):204-206. |
LÜ W X, GE Y, WU J Z, et al. Study on the method for the determination of nitric nitrogen,ammoniacal nitrogen and total nitrogen in plant[J]. Spectrosc Spectr Anal, 2004, 24(2):204-206.DOI: 10.3321/j.issn:1000-0593.2004.02.023.
doi: 10.3321/j.issn:1000-0593.2004.02.023 |
|
[18] | 金雅琴, 李冬林, 丁雨龙, 等. 盐胁迫对乌桕幼苗光合特性及叶绿素含量的影响[J]. 南京林业大学学报(自然科学版), 2011, 35(1):29-33. |
JIN Y Q, LI D L, DING Y L, et al. Effects of salt stress on photosynthetic characteristics and chlorophyll content of Sapium sebiferum seedlings[J]. J Nanjing For Univ (Nat Sci Ed), 2011, 35(1):29-33.DOI: 10.3969/j.issn.1000-2006.2011.01.007.
doi: 10.3969/j.issn.1000-2006.2011.01.007 |
|
[19] | 芦治国, 於朝广, 周冬琴, 等. 盐胁迫对木槿属两个外来种质生长及叶绿素含量影响[J]. 林业科技开发, 2012, 26(1):40-43. |
LU Z G, YU C G, ZHOU D Q, et al. Effects of NaCl stress on the growth and chlorophyll contents of two exotic germplasm of Hibiscus L[J]. China For Sci Technol, 2012, 26(1):40-43.DOI: 10.3969/j.issn.1000-8101.2012.01.011.
doi: 10.3969/j.issn.1000-8101.2012.01.011 |
|
[20] |
FARISSI M, MOURADI M, FARSSI O, et al. Variations in leaf gas exchange,chlorophyll fluorescence and membrane potential of Medicago sativa root cortex cells exposed to increased salinity: the role of the antioxidant potential in salt tolerance[J]. Arch Biol Sci, 2018, 70(3):413-423.DOI: 10.2298/abs171019001f.
doi: 10.2298/abs171019001f |
[21] |
ZHU J K. Plant salt tolerance[J]. Trends Plant Sci, 2001, 6(2):66-71.DOI: 10.1016/s1360-1385(00)01838-0.
doi: 10.1016/s1360-1385(00)01838-0 |
[22] | 常丽丽, 彭存智, 王丹, 等. 盐芥叶片应答盐胁迫的蛋白质组学分析[J]. 江苏农业学报, 2022, 38(1):49-64. |
CHANG L L, PENG C Z, WANG D, et al. Proteomics analysis of Eutrema salsugineum leaves in response to salt stress[J]. Jiangsu J of Agr Sci, 2022, 38(1):49-64. DOI: 10.3969/j.issn.1000-4440.2022.01.006.
doi: 10.3969/j.issn.1000-4440.2022.01.006 |
|
[23] | 郭卫珍, 张亚利, 奉树成. NaCl胁迫对2个山茶品种盐害及叶绿素荧光特性的影响[J]. 江苏农业学报, 2021(3):562-569. |
GUO W Z, ZHANG Y L, FENG S C. Effects of NaCl stress on salt injury and chlorophyll fluorescence characteristics of two Camellia cultivars[J]. Jiangsu J of Agr Sci, 2021(3):562-569. DOI: 10.3969/j.issn.1000-4440.2021.03.003.
doi: 10.3969/j.issn.1000-4440.2021.03.003 |
|
[24] | 鲁强, 杨玲, 王昊伟, 等. 秀丽四照花光合特性和叶绿体超微结构的盐胁迫响应[J]. 南京林业大学学报(自然科学版), 2020, 44(4):29-36. |
LU Q, YANG L, WANG H W, et al. Responses of photosynthetic characteristics and chloroplast ultrastructure to salt stress in seedlings of Cornus hongkongensis subsp. Elegans[J]. J Nanjing For Univ (Nat Sci Ed) 2020, 44(4):29-36.DOI: 10.3969/j.issn.1000-2006.201904035.
doi: 10.3969/j.issn.1000-2006.201904035 |
|
[25] |
WANG D, MAUGHAN M W, SUN J D, et al. Impact of nitrogen allocation on growth and photosynthesis of Miscanthus (Miscanthus × giganteus)[J]. GCB Bioenergy, 2012, 4(6):688-697.DOI: 10.1111/j.1757-1707.2012.01167.x.
doi: 10.1111/j.1757-1707.2012.01167.x. |
[26] | 邢瑶, 马兴华. 氮素形态对植物生长影响的研究进展[J]. 中国农业科技导报, 2015, 17(2):109-117. |
XING Y, MA X H. Research progress on effect of nitrogen form on plant growth[J]. J Agric Sci Technol, 2015, 17(2):109-117.DOI: 10.13304/j.nykjdb.2014.574.
doi: 10.13304/j.nykjdb.2014.574 |
|
[27] | 刘冉, 石峰, 刘伟成, 等. 不同形态氮素对盐胁迫下番茄细胞超微结构与光合作用的影响[J]. 园艺学报, 2015, 42(3):471-479. |
LIU R, SHI F, LIU W C, et al. Effect of nitrogen forms on cell ultrastructure and photosynthesis of tomato under salinity[J]. Acta Hortic Sin, 2015, 42(3):471-479.DOI: 10.16420/j.issn.0513-353x.2014-0821.
doi: 10.16420/j.issn.0513-353x.2014-0821 |
|
[28] | 陈军, 关欣, 范翠枝, 等. 盐胁迫对番茄种子萌发中多胺形态变化和抗氧化的影响[J]. 土壤学报, 2021, 58(6):1598-1609. |
CHEN J, GUAN X, FAN C Z, et al. Effects of salt stress on form of polyamine and antioxidation in germinating tomato seed[J]. Acta Pedologica Sinica, 2021, 58(6):1598-1609. DOI: 10.11766/trxb202002180051.
doi: 10.11766/trxb202002180051 |
|
[29] |
MIFLIN B J, HABASH D Z. The role of glutamine synthetase and glutamate dehydrogenase in nitrogen assimilation and possibilities for improvement in the nitrogen utilization of crops[J]. J Exp Bot, 2002, 53(370):979-987.DOI: 10.1093/jexbot/53.370.979.
doi: 10.1093/jexbot/53.370.979 |
[30] |
TAKAHASHI R, NISHIO T, ICHIZEN N, et al. Cloning and functional analysis of the K+ transporter,PhaHAK2,from salt-sensitive and salt-tolerant reed plants[J]. Biotechnol Lett, 2007, 29(3):501-506.DOI: 10.1007/s10529-006-9246-9.
doi: 10.1007/s10529-006-9246-9 |
[31] | 田霄鸿, 李生秀, 王朝辉, 等. 莴笋对不同形态氮素的反应[J]. 应用生态学报, 2003, 14(3):377-381. |
TIAN X H, LI S X, WANG Z H, et al. Response of lettuce to different nitrogen forms[J]. Chin J Appl Ecol, 2003, 14(3):377-381. | |
[32] |
JONGBLOED R H, CLEMENT J M A M, BORST-PAUWELS G W F H. Kinetics of N H 4 + and K+ uptake by ectomycorrhizal fungi.Effect of N H 4 + on K+ uptake[J]. Physiol Plant, 1991, 83(3):427-432.DOI: 10.1111/j.1399-3054.1991.tb00116.x.
doi: 10.1111/j.1399-3054.1991.tb00116.x |
[33] | 于铁峰, 刘晓静, 张晓玲, 等. 氮素对紫花苜蓿根茎叶氮含量及硝酸还原酶活性的影响[J]. 草原与草坪, 2017, 37(5):14-20. |
YU T F, LIU X J, ZHANG X L, et al. Effects of nitrogen on nitrogen content and nitrate reductase activity in root stem and leaf of alfalfa[J]. Grassland Turf, 2017, 37(5):14-20.DOI: 10.13817/j.cnki.cyycp.2017.05.003.
doi: 10.13817/j.cnki.cyycp.2017.05.003 |
|
[34] |
ALLRED B J. Cation effects on nitrate mobility in an unsaturated soil[J]. Trans ASABE, 2008, 51(6):1997-2012.DOI: 10.13031/2013.25404.
doi: 10.13031/2013.25404 |
[35] | 李孝刚, 彭曙光, 靳志丽, 等. 有机物料对植烟土壤氮素矿化及微生物性质的影响[J]. 土壤学报, 2021, 58(1):225-234. |
LI X G, PENG S G, JIN Z L, et al. Effects of application of organic materials on nitrogen mineralization and microbial properties in tobacco planting soil[J]. Acta Pedologica Sinica, 2021, 58(1):225-234. DOI: 10.11766/trxb201907220320.
doi: 10.11766/trxb201907220320 |
|
[36] | 赵嫚, 陈仕勇, 李亚萍, 等. 外源GABA对盐胁迫下金花菜种子萌发及幼苗抗氧化能力的影响[J]. 江苏农业学报, 2021(2):310-316. |
ZHAO M, CHEN S Y, LI Y P, et al. Influence of γ-aminobutyric acid (GABA) on seed germination and antioxidant protection of Medicago polymorpha under salt stress[J]. Jiangsu J of Agr Sci, 2021(2):310-316. DOI: 10.3969/j.issn.1000-4440.2021.02.005.
doi: 10.3969/j.issn.1000-4440.2021.02.005 |
|
[37] | 代伟, 赵剑强, 丁家志, 等. 高盐高碱环境下硝化反硝化过程及N2O产生特征[J]. 环境科学, 2019, 40(8):3730-3737. |
DAI W, ZHAO J Q, DING J Z, et al., Nitrification,denitrification,and N2O production under saline and alkaline conditions[J]. Environ Sci, 2019, 40(8):3730-3737.DOI: 10.13227/j.hjkx.201811043.
doi: 10.13227/j.hjkx.201811043 |
[1] | YANG Jianxin, GUO Shuailong, MA Changle, LI Rui, GAO Can, KANG Xinling, LI Fulong. Research progress on the dust retention effect and physiological-ecological response of Osmanthus fragrans [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2025, 49(2): 1-11. |
[2] | ZHANG Yiting, XIA Nianhe, LIN Shuyan, DING Yulong. Spatial distribution characteristics and influencing factors of Chimonobambusa in China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2025, 49(2): 107-114. |
[3] | XU Huihui, BAN Zhuo, WANG Chenxue, BI Quanxin, LIU Xiaojuan, WANG Libing. The identification and functional analysis of BZR1 genes in yellowhorn [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2025, 49(2): 12-22. |
[4] | CHENG Caiyun, XUE Jianhui, MA Jie. Assessment of different Karst plantation types on soil quality based on a minimum data set [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2025, 49(2): 134-142. |
[5] | LU Qiwei, TUO Yunfei, ZHENG Yang, LUO Wei, DAI Qinlong, HE Xiahong. Research on characteristics of soil infiltration at different altitude gradients in Liziping Nature Reserve [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2025, 49(2): 143-152. |
[6] | LI Juan, XUE Jianhui, XIONG Weiwei, ZHANG Guowei, WANG Hankun. Effect of biochar application on soil runoff and water quality in green roof [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2025, 49(2): 153-160. |
[7] | YANG Pengcheng, LIU Yanyi, CHEN Shuchang, SHEN Yicong, SONG Chenyue. An ultra-low-power sediment concentration detecting system in runoff based on LoRa networking [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2025, 49(2): 161-168. |
[8] | KONG Delun, XING Yanqiu. Inversion of tree height from GEDI and ICESat-2 spaceborne lidar [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2025, 49(2): 175-184. |
[9] | WANG Junling, FAN Xijian, YANG Xubing, YE Qiaolin, FU Liyong. Method for aerial forest fire image recognition based on self-attention mechanism [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2025, 49(2): 194-202. |
[10] | LAN Yang, LI Yan, DONG Zhen, FENG Dike, LIU Ke, JIA Zhenyi, FAN Qingbin, LI Ning, CHENG Xinyu, WEN Jiale, HUANG Haoran, YE Zi, YU Ye. Analysis of heavy metal sources and risk assessment of surface dust in underground parking garages in Nanjing City [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2025, 49(2): 203-211. |
[11] | FENG Tingting, ZHENG Yang, LUO Wei, DAI Qinlong, LI Jianwei, WANG Fei, TUO Yunfei. Ecological health assessment based on fuzzy analytic hierarchy process: a case study of Liziping National Nature Reserve [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2025, 49(2): 212-220. |
[12] | TANG Xiaolan, ZHANG Jie, ZHOU Mingjie, SONG Tianrui. Planning of recreational scenic roads abundant region in southwest Zhejiang nature reserve based on GIS-AHP and longitudinal view section analysis [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2025, 49(2): 221-232. |
[13] | ZHANG Wei, LI Linkun, LIANG Chongjun, WANG Libing. Cloning, transcriptional activation, and tissue expression analysis of XsWRI1 from Xanthoceras sorbifolium [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2025, 49(2): 23-30. |
[14] | XIONG Lichun, ZHANG Zhiguo, CHENG Baodong, WANG Fengting, XU Chenying. Impact of embedded global value chains on the quality of export forest products in the context of “double cycle” [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2025, 49(2): 242-251. |
[15] | LI Yuyan, AO Yan, ZHAO Leilei, XU Xiangyin, CHEN Yuhong, NA Risu. Regularities of fruit growing and development and its inclusion of Xanthoceras sorbifolium [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2025, 49(2): 31-37. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||