Evolutions and driving mechanisms of urban blue-green spaces in northeast China: a case study with the urban central district of Harbin City

SONG Shuang, SHI Mengxi, HU Shanshan, WANG Shaohan, XU Dawei

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (4) : 221-229.

PDF(2733 KB)
PDF(2733 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (4) : 221-229. DOI: 10.12302/j.issn.1000-2006.202105021

Evolutions and driving mechanisms of urban blue-green spaces in northeast China: a case study with the urban central district of Harbin City

Author information +
History +

Abstract

【Objective】 Blue-green spaces are constantly getting eroded as a result of urbanization. The study aimed to clarify the evolutionary characteristics of blue-green spaces and their driving mechanisms, which is highly significant for guiding urban land use planning and improving the quality of the ecological environment. 【Method】 With the central district of Harbin as the study area, time nodes based on five rounds of urban master planning during 1981-2020 were selected to explore the evolutionary characteristics of blue-green spaces. A spatial econometric model was then constructed to analyze its evolutionary driving mechanisms from the viewpoint of both socio-economic and natural factors. 【Result】 (1) The cultivated land, woodland, water and wetland areas in the study region decreased significantly, whereas the grassland area increased. The relevant land-use policies and urban planning schemes issued by the government were responsible for the evolution of blue-green spaces in the study area. (2) The total proportion of blue-green spaces exhibited a decreasing trend in all gradients, and the proportion of cultivated land, water, and wetland decreased significantly in the main urban area and the suburbs. The proportion of woodland in the urban center and at the periphery of the main construction land in the adjacent Songbei District decreased slightly. Grassland increased in the main urban area. (3) From 1981 to 2017, the blue-green space evolution model of the study area was dominated by endocytosis contraction in the main urban area. From 2017 to 2020, the outlying contraction had become the main evolutionary mode of blue-green spaces. The reduction in blue-green spaces had shifted from the internal units of the urban center building land to the periphery of the urban area. (4) The evolution of various blue-green spaces was driven by various factors. Socio-economic factors were the direct driving force, with the driving effect of natural factors not as obvious. 【Conclusion】 In this study, the spatial and temporal evolution characteristics of blue-green spaces in the central district of Harbin during 1981-2020 were identified, and a spatial econometric model was used to explore the different driving effects exerted by socio-economic and natural factors on the evolution of blue-green spaces. The study provides a reference for formulating a reasonable and scientific urban blue-green space development strategy during the rapid urban expansion in northeast China.

Key words

blue-green space / urban evolution / driving mechanism / spatial econometric model / Harbin City

Cite this article

Download Citations
SONG Shuang , SHI Mengxi , HU Shanshan , et al . Evolutions and driving mechanisms of urban blue-green spaces in northeast China: a case study with the urban central district of Harbin City[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2022, 46(4): 221-229 https://doi.org/10.12302/j.issn.1000-2006.202105021

References

[1]
WEI S M, PAN J H, LIU X. Landscape ecological safety assessment and landscape pattern optimization in arid inland river basin:take Ganzhou District as an example[J]. Hum Ecol Risk Assess Int J, 2020, 26(3):782-806.DOI:10.1080/10807039.2018.1536521.
[2]
ACCORSI R, CHOLETTE S, MANZINI R, et al. The land-network problem: ecosystem carbon balance in planning sustainable agro-food supply chains[J]. J Clean Prod, 2016, 112:158-171.DOI:10.1016/j.jclepro.2015.06.082.
[3]
GIANNICO V, SPANO G, ELIA M, et al. Green spaces,quality of life,and citizen perception in European cities[J]. Environ Res, 2021, 196:110922.DOI:10.1016/j.envres.2021.110922.
[4]
杜红玉. 特大型城市“蓝绿空间”冷岛效应及其影响因素研究:以上海市为例[D]. 上海: 华东师范大学, 2018.
DU H Y. The cool island effect of urban blue-green spaces and impact factors in mega city: a case study of Shanghai[D]. Shanghai: East China Normal University, 2018.
[5]
ZHOU Q Q, KONIJNENDIJK VAN DEN BOSCH C C, CHEN Z G, et al. China’s green space system planning: development,experiences,and characteristics[J]. Urban For Urban Green, 2021, 60:127017.DOI:10.1016/j.ufug.2021.127017.
[6]
MU B, LIU C, TIAN G H, et al. Conceptual planning of urban-rural green space from a multidimensional perspective: a case study of Zhengzhou,China[J]. Sustainability, 2020, 12(7):2863.DOI:10.3390/su12072863.
[7]
穆博, 李华威, MAYER A L, 等. 基于遥感和图论的绿地空间演变和连通性研究:以郑州为例[J]. 生态学报, 2017, 37(14):4883-4895.
MU B, LI H W, MAYER A L, et al. Dynamic changes of green-space connectivity based on remote sensing and graph theory:a case study in Zhengzhou,China[J]. Acta Ecol Sin, 2017, 37(14):4883-4895.DOI:10.5846/stxb201604080644.
[8]
苏宝玲, 佟耕, 范业展, 等. 沈阳城市绿地系统的景观生态评价[J]. 生态学杂志, 2010, 29(8):1599-1604.
SU B L, TONG G, FAN Y Z, et al. Landscape ecological evaluation of urban greenland system in Shenyang[J]. Chin J Ecol, 2010, 29(8):1599-1604.DOI:10.13292/j.1000-4890.2010.0234.
[9]
巫涛. 长沙城市绿地景观格局及其生态服务功能价值研究[D]. 长沙: 中南林业科技大学, 2012.
WU T. The research on landscape pattern and ecosystem service in Changsha[D]. Changsha: Central South University of Forestry & Technology, 2012.
[10]
付刚, 肖能文, 乔梦萍, 等. 北京市近二十年景观破碎化格局的时空变化[J]. 生态学报, 2017, 37(8):2551-2562.
FU G, XIAO N W, QIAO M P, et al. Spatial-temporal changes of landscape fragmentation patterns in Beijing in the last two decades[J]. Acta Ecol Sin, 2017, 37(8):2551-2562.DOI:10.5846/stxb201510232141.
[11]
宫兆宁, 张翼然, 宫辉力, 等. 北京湿地景观格局演变特征与驱动机制分析[J]. 地理学报, 2011, 66(1):77-88.
GONG Z N, ZHANG Y R, GONG H L, et al. Evolution of wetland landscape pattern and its driving factors in Beijing[J]. Acta Geogr Sin, 2011, 66(1):77-88.
[12]
SHEN Y S, LUNG S C C. Identifying critical green structure characteristics for reducing the suicide rate[J]. Urban For Urban Green, 2018, 34:147-153.DOI:10.1016/j.ufug.2018.06.005.
[13]
HOU L, WU F Q, XIE X L. The spatial characteristics and relationships between landscape pattern and ecosystem service value along an urban-rural gradient in Xi’an City,China[J]. Ecol Indic, 2020, 108:105720.DOI:10.1016/j.ecolind.2019.105720.
[14]
姜磊, 何世雄, 崔远政. 基于空间计量模型的氮氧化物排放驱动因素分析:基于卫星观测数据[J]. 地理科学, 2020, 40(3):364-373.
JIANG L, HE S X, CUI Y Z. Analysis of driving factors of nitrogen oxides emissions in China based on spatial econometric models: data from satellite observations[J]. Sci Geogr Sin, 2020, 40(3):364-373.DOI:10.13249/j.cnki.sgs.2020.03.004.
[15]
王海军, 任经纬, 张彬, 等. 利用广义加性模型解析长江中游城市群城镇用地扩展驱动力[J]. 长江流域资源与环境, 2021, 30(1):32-43.
WANG H J, REN J W, ZHANG B, et al. Analysis of driving forces of urban land expansion in urban agglomeration in the middle reaches of the Yangtze River based on general additive[J]. Resour Environ Yangtze Basin, 2021, 30(1):32-43.
[16]
LI K M, FENG M M, BISWAS A, et al. Driving factors and future prediction of land use and cover change based on satellite remote sensing data by the LCM model: a case study from Gansu Province,China[J]. Sensors, 2020, 20(10):2757.DOI:10.3390/s20102757.
[17]
苗建军, 华潮, 丰俊超. 产业协同集聚的升级效应与碳排放:基于空间计量模型的实证分析[J]. 生态经济, 2020, 36(2):28-33.
MIAO J J, HUA C, FENG J C. Upgrading effect of industrial collaborative agglomeration and carbon emission: an empirical analysis based on spatial econometric model[J]. Ecol Econ, 2020, 36(2):28-33.
[18]
吕倩. 京津冀地区汽车运输碳排放影响因素研究[J]. 中国环境科学, 2018, 38(10):3689-3697.
Q. Study on the driving factors of vehicle transport carbon emissions in Beijing-Tianjin-Hebei region[J]. China Environ Sci, 2018, 38(10):3689-3697.DOI:10.19674/j.cnki.issn1000-6923.2018.0399.
[19]
王玉琳, 汪靓, 华祖林, 等. 巢湖南淝河口黑水团区流速和溶解氧与Fe2+、S2-浓度的空间关联性[J]. 湖泊科学, 2016, 28(4):710-717.
WANG Y L, WANG L, HUA Z L, et al. The relationships of velocity,dissolved oxygen with Fe2+,S2- in black bloom region on Nanfei River estuary of Lake Chaohu[J]. J Lake Sci, 2016, 28(4):710-717.DOI:10.18307/2016.0403.
[20]
陈立恒, 龚健, 王雄, 等. 长江中游地区生态系统服务平衡与城镇化的空间关系[J]. 生态学报, 2021, 41(14):5546-5556.
CHEN L H, GONG J, WANG X, et al. Spatial relationship between ecosystem services balance and urbanization in the middle reaches of the Yangtze River[J]. Acta Ecol Sin, 2021, 41(14):5546-5556.
[21]
李光勤, 秦佳虹, 何仁伟. 中国大气PM2.5污染演变及其影响因素[J]. 经济地理, 2018, 38(8):11-18.
LI G Q, QIN J H, HE R W. Spatial-temporal evolution and influencing factors of China’s PM2.5 pollution[J]. Econ Geogr, 2018, 38(8):11-18.DOI:10.15957/j.cnki.jjdl.2018.08.003.
[22]
苏凯, 魏道智, 林文雄. 福建省城镇化效率的区域差异及空间格局研究[J]. 生态学报, 2019, 39(15):5450-5459.
SU K, WEI D Z, LIN W X. Regional differences and spatial patterns of urbanization efficiency in Fujian Province,China[J]. Acta Ecol Sin, 2019, 39(15):5450-5459.DOI:10.5846/stxb201808261819.
[23]
刘汉初, 樊杰, 曾瑜皙, 等. 中国高耗能产业碳排放强度的时空差异及其影响因素[J]. 生态学报, 2019, 39(22):8357-8369.
LIU H C, FAN J, ZENG Y X, et al. Spatio-temporal differences in carbon intensity in high-energy-intensive industry and its influence factors in China[J]. Acta Ecol Sin, 2019, 39(22):8357-8369.DOI:10.5846/stxb201809121957.
[24]
贾卓, 强文丽, 王月菊, 等. 兰州—西宁城市群工业污染集聚格局及其空间效应[J]. 经济地理, 2020, 40(1):68-75,84.
JIA Z, QIANG W L, WANG Y J, et al. The spatial characteristics and spatial effect of industrial pollution agglomeration in Lanzhou-Xining urban agglomeration[J]. Econ Geogr, 2020, 40(1):68-75,84.DOI:10.15957/j.cnki.jjdl.2020.01.008.
[25]
烟贯发, 张思冲, 齐少群, 等. 基于RS和GIS技术的松花江哈尔滨段流域面源污染特征分析[J]. 自然灾害学报, 2013, 22(3):91-98.
YAN G F, ZHANG S C, QI S Q, et al. Characteristic analysis of surface source pollution in Harbin section of Songhua River based on RS and GIS technology[J]. J Nat Disasters, 2013, 22(3):91-98.DOI:10.13577/j.jnd.2013.0313.
[26]
张远景. 哈尔滨中心城区生态网络分析及其景观生态格局优化研究[D]. 哈尔滨: 东北农业大学, 2015.
ZHANG Y J. Eco-network analysis of Harbin central city and the research on its landscape ecological pattern optimization[D]. Harbin: Northeast Agricultural University, 2015.
[27]
SONG S, XU D W, HU S S, et al. Ecological network optimization in urban central district based on complex network theory: a case study with the urban central district of Harbin[J]. Int J Environ Res Public Heal, 2021, 18(4):1427.DOI:10.3390/ijerph18041427.
[28]
侍昊, 薛建辉, 马婉丽. 1991—2006年无锡市土地利用变化动态度及转换参数分析[J]. 南京林业大学学报(自然科学版), 2012, 36(6):63-68.
SHI H, XUE J H, MA W L. Analysis on dynamic degree and transition parameters of land-use type changes in Wuxi City,Jiangsu during 1991-2006[J]. J Nanjing For Univ (Nat Sci Ed),2012, 36(6):63-68.DOI:10.3969/j.issn.1000-2006.2012.06.013.
[29]
ZHANG Q W, SU S L. Determinants of urban expansion and their relative importance: a comparative analysis of 30 major metropolitans in China[J]. Habitat Int, 2016, 58:89-107.DOI:10.1016/j.habitatint.2016.10.003.
[30]
LIU X P, LI X, CHEN Y M, et al. A new landscape index for quantifying urban expansion using multi-temporal remotely sensed data[J]. Landsc Ecol, 2010, 25(5):671-682.DOI:10.1007/s10980-010-9454-5.
[31]
赵海霞, 王淑芬, 孟菲, 等. 绿色空间格局变化及其驱动机理:以南京都市区为例[J]. 生态学报, 2020, 40(21):7861-7872.
ZHAO H X, WANG S F, MENG F, et al. Green space pattern changes and its driving mechanism: a case study of Nanjing metropolitan area[J]. Acta Ecol Sin, 2020, 40(21):7861-7872.DOI:10.5846/stxb201907091442.
[32]
吴健生, 罗可雨, 赵宇豪. 深圳市近20年城市景观格局演变及其驱动因素[J]. 地理研究, 2020, 39(8):1725-1738.
WU J S, LUO K Y, ZHAO Y H. The evolution of urban landscape pattern and its driving forces of Shenzhen from 1996 to 2015[J]. Geogr Res, 2020, 39(8):1725-1738.DOI:10.11821/dlyj020190539.
[33]
陈燕红, 蔡芫镔, 仝川. 福州主城区绿色空间不同演化模式对地表温度扰动的影响[J]. 环境科学研究, 2020, 33(4):995-1004.
CHEN Y H, CAI Y B, TONG C. Effects of different urban green space development on surface temperature in Fuzhou City[J]. Res Environ Sci, 2020, 33(4):995-1004.DOI:10.13198/j.issn.1001-6929.2019.10.04.
[34]
MU L, FANG L, DOU W B, et al. Urbanization-induced spatio-temporal variation of water resources utilization in northwestern China: a spatial panel model based approach[J]. Ecol Indic, 2021, 125:107457.DOI:10.1016/j.ecolind.2021.107457.
[35]
ZHANG K, XU D, LI S, et al. Strategic interactions in environmental regulation enforcement: evidence from Chinese cities[J]. Environ Sci Pollut Res Int, 2021, 28(2):1992-2006.DOI:10.1007/s11356-020-10443-6.
[36]
XU W, SUN J, LIU Y, et al. Spatiotemporal variation and socioeconomic drivers of air pollution in China during 2005-2016[J]. J Environ Manage, 2019, 245:66-75.DOI:10.1016/j.jenvman.2019.05.041.
[37]
XU Z, ZHANG Z F, LI C. Exploring urban green spaces in China:spatial patterns,driving factors and policy implications[J]. Land Use Policy, 2019, 89:104249.DOI:10.1016/j.landusepol.2019.104249.
[38]
GAO Z W, SONG K, PAN Y J, et al. Drivers of spontaneous plant richness patterns in urban green space within a biodiversity hotspot[J]. Urban For Urban Green, 2021, 61:127098.DOI:10.1016/j.ufug.2021.127098.
[39]
龚文峰, 袁力, 范文义. 基于CA-Markov的哈尔滨市土地利用变化及预测[J]. 农业工程学报, 2012, 28(14):216-222,后插6.
GONG W F, YUAN L, FAN W Y. Dynamic change and prediction of land use in Harbin City based on CA-Markov model[J]. Trans Chin Soc Agric Eng, 2012, 28(14):216-222,后插6.DOI:10.3969/j.issn.1002-6819.2012.14.033.
[40]
龚文峰, 袁力, 范文义. 基于地形梯度的哈尔滨市土地利用格局变化分析[J]. 农业工程学报, 2013, 29(2):250-259,303.
GONG W F, YUAN L, FAN W Y. Analysis on land use pattern changes in Harbin based on terrain gradient[J]. Trans Chin Soc Agric Eng, 2013, 29(2):250-259,303.DOI:10.3969/j.issn.1002-6819.2013.02.034.
[41]
张远景, 俞滨洋. 城市生态网络空间评价及其格局优化[J]. 生态学报, 2016, 36(21):6969-6984.
ZHANG Y J, YU B Y. Analysis of urban ecological network space and optimization of ecological network pattern[J]. Acta Ecol Sin, 2016, 36(21):6969-6984.DOI:10.5846/stxb201504270870.
[42]
安静, 王文杰, 王洪岩, 等. 人工林和农田对东北地区土壤碳、氮含量及相关指标垂直分布的影响[J]. 植物研究, 2012, 32(3):331-338.
AN J, WANG W J, WANG H Y, et al. Effect of forest and farm on vertical patterns of soil carbon,nitrogen and other parameters in northeast China[J]. Bull Bot Res, 2012, 32(3):331-338.DOI:10.7525/j.issn.1673-5102.2012.03.014.
PDF(2733 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/