Th2CysPrx gene enhanced abiotic stress tolerances of Saccharomyces cerevisiae

WANG Yuanyuan, LIU Baichao, JIANG Bo, WANG Danni, GAO Caiqiu

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (4) : 87-94.

PDF(2745 KB)
PDF(2745 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (4) : 87-94. DOI: 10.12302/j.issn.1000-2006.202105023

Th2CysPrx gene enhanced abiotic stress tolerances of Saccharomyces cerevisiae

Author information +
History +

Abstract

【Objective】 Peroxidoxin is an important protein in organisms for regulation of the redox system in plants, and plays an important role in plant growth and metabolism. Previous research has found that overexpression of the Th2CysPrx gene increased the expression levels of four antioxidant genes (ThGSTZ1, ThGPX, ThSOD and ThPOD), thereby increasing the NaCl stress tolerance of transgenic Arabidopsis and Tamarix hispida. This study explored whether the Th2CysPrx gene is involved in the response to other salts or stresses in addition to NaCl stress. 【Method】 Th2CysPrx was constructed into the pYES2 yeast expression vector and transformed into the INVSC1 cells of Saccharomyces cerevisiae. The cell growth between the recombinant vector and empty vector was compared after applying various abiotic stresses. 【Result】 The survival rate of cells with the overexpressed Th2CysPrx gene was not significantly different from that of the control under cold temperature, KCl or LiCl stress. However, the overexpression of Th2CysPrx gene significantly increased the cell survival rate of yeast cells under oxidative, NaCl and NaHCO3 stress. In addition, the overexpression of Th2CysPrx gene also significantly improved the cell survival rate in recombinant yeast under stress caused by higher than 0.5 mol/L sorbitol, temperature above 44 ℃, or less than 0.007%(mass fraction) CdCl2. 【Conclusion】 Th2CysPrx gene can significantly enhance the tolerance of yeast cells not only to NaCl or NaHCO3 stress, but also to specific osmotic, high-temperature, oxidative, or heavy metal stresses, but exhibits no obvious tolerance to cold temperature, KCl or LiCl stress.

Key words

Tamarix hispida / yeast / peroxidoxin(Prxs) / abiotic stress

Cite this article

Download Citations
WANG Yuanyuan , LIU Baichao , JIANG Bo , et al . Th2CysPrx gene enhanced abiotic stress tolerances of Saccharomyces cerevisiae[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2022, 46(4): 87-94 https://doi.org/10.12302/j.issn.1000-2006.202105023

References

[1]
晏洪铃, 罗琳, 李雅贞, 等. 锌污染对五节芒的膜脂过氧化水平及抗氧化能力的影响[J]. 森林工程, 2015, 31(1):1-5.
YAN H L, LUO L, LI Y Z, et al. MDA accumulation and antioxidation capacity of miscanthus floridulus under Zn stress[J]. Forest Engineering, 2015, 31(1):1-5.DOI:10.16270/j.cnki.slgc.2015.01.001.
[2]
段婷, 姚兵. 过氧化物还原酶蛋白家族与疾病[J]. 医学研究生学报, 2015, 28(1):98-101.
DUAN T, YAO B. The peroxiredoxins protein family and related disease[J]. J Med Postgrad, 2015, 28(1):98-101.DOI:10.16571/j.cnki.1008-8199.2015.01.008.
[3]
田梦洋. 豌豆根瘤菌过氧化物还原酶基因PrxⅡ的功能研究[D]. 武汉: 中南民族大学, 2016.
TIAN M Y. Study of the function of peroxiredoxin genes prxⅡ in Rhizobium leguminosarum[D]. Wuhan: South-central University for Nationalities, 2016.
[4]
KIM K, KIM I H, LEE K Y, et al. The isolation and purification of a specific “protector” protein which inhibits enzyme inactivation by a thiol/Fe(III)/O2 mixed-function oxidation system[J]. J Biol Chem, 1988, 263(10):4704-4711. DOI:10.1016/S0021-9258(18)68840-4.
[5]
ZHAO C, PENG C, FAN S, et al. Novel 2-Cys Peroxiredoxin gene confers biotic and abiotic stress resistance in Penaeus monodon[J]. Fish Shellfish Immunol, 2020, 106:768-775.DOI:10.1016/j.fsi.2020.08.017.
[6]
冯玉龙. 棉花中Peroxiredoxin全基因组鉴定和表达分析[D]. 郑州: 郑州大学, 2020.
FENG Y L. Genome-wide identification and expression regulation of peroxiredoxin genes in cotton[D]. Zhengzhou: Zhengzhou University, 2020.
[7]
李梦宇. 艾克曼菌Prx蛋白结构与功能研究[D]. 合肥: 安徽大学, 2020.
LI M Y. Research on the structure and function of Prx from Akkermansia muciniphila[D]. Hefei: Anhui University, 2020.DOI: 10.26917/d.cnki.ganhu.2020.000896.
[8]
KIM K H, ALAM I, LEE K W, et al. Enhanced tolerance of transgenic tall fescue plants overexpressing 2-Cys peroxiredoxin against methyl viologen and heat stresses[J]. Biotechnol Lett, 2010, 32(4):571-576.DOI:10.1007/s10529-009-0185-0.
[9]
VIDIGAL P, MARTIN-HERNANDEZ A M, GUIU-ARAGONÉS C, et al. Selective silencing of 2Cys and type-IIB Peroxiredoxins discloses their roles in cell redox state and stress signaling[J]. J Integr Plant Biol, 2015, 57(6):591-601.DOI:10.1111/jipb.12296.
[10]
MACHIDA T, ISHIBASHI A, KIRINO A, et al. Chloroplast NADPH-dependent thioredoxin reductase from Chlorella vulgaris alleviates environmental stresses in yeast together with 2-Cys peroxiredoxin[J]. PLoS One, 2012, 7(9):e45988.DOI:10.1371/journal.pone.0045988.
[11]
KIM M D, KIM Y H, KWON S Y, et al. Overexpression of 2-cysteine peroxiredoxin enhances tolerance to methyl viologen-mediated oxidative stress and high temperature in potato plants[J]. Plant Physiol Biochem, 2011, 49(8):891-897.DOI:10.1016/j.plaphy.2011.04.001.
[12]
张会慧, 田褀, 刘关君, 等. 转2-CysPrx基因烟草抗氧化酶和PSII电子传递对盐和光胁迫的响应[J]. 作物学报, 2013, 39(11):2023-2029.
ZHANG H H, TIAN Q, LIU G J, et al. Responses of antioxidant enzyme and PSII electron transport in leaf of transgenic tobacco carrying 2-CysPrx to salt and light stresses[J]. Acta Agron Sin, 2013, 39(11):2023-2029.
[13]
李春香, 戴乐. 柽柳属植物在克拉玛依城市园林景观中的应用[J]. 绿色科技, 2017(7):71-72.DOI:10.16663/j.cnki.lskj.2017.07.024.
[14]
WANG L, LI Z, LU M, et al. ThNAC13,a NAC transcription factor from Tamarix hispida,confers salt and osmotic stress tolerance to transgenic Tamarix and Arabidopsis[J]. Front Plant Sci, 2017, 8:635.DOI:10.3389/fpls.2017.00635.
[15]
唐绯绯, 赵玉琳, 王培龙, 等. 刚毛柽柳ThP5CR基因的克隆及抗逆功能分析[J]. 林业科学, 2017, 53(7):1-9.
TANG F F, ZHAO Y L, WANG P L, et al. Cloning and stress tolerance analysis of ThP5CR from Tamarix hispida[J]. Sci Silvae Sin, 2017, 53(7):1-9.DOI: 10.11707/j.1001-7488.20170701.
[16]
JI X Y, NIE X G, LIU Y J, et al. A bHLH gene from Tamarix hispida improves abiotic stress tolerance by enhancing osmotic potential and decreasing reactive oxygen species accumulation[J]. Tree Physiol, 2016, 36(2):193-207.DOI:10.1093/treephys/tpv139.
[17]
YANG J, WANG Y, LIU G, et al. Tamarix hispida metallothionein-like ThMT3,a reactive oxygen species scavenger,increases tolerance against Cd2+,Zn2+,Cu2+,and NaCl in transgenic yeast[J]. Mol Biol Rep, 2011, 38(3):1567-1574.DOI:10.1007/s11033-010-0265-1.
[18]
刘中原, 姜波, 吕佳欣, 等. 刚毛柽柳Th2CysPrx基因的互作蛋白及其表达模式分析[J]. 南京林业大学学报(自然科学版), 2019, 43(2):86-92.
LIU Z Y, JIANG B, LYU J X, et al. Interacting proteins of Tamarix hispida Th1CysPrx and their expression pattern analysis[J]. J Nanjing For Univ (Nat Sci Ed), 2019, 43(2):86-92.DOI:10.3969/j.issn.1000-2006.201806018.
[19]
WANG Y Y, LIU Z Y, WANG P L, et al. A 2-Cys peroxiredoxin gene from Tamarix hispida improved salt stress tolerance in plants[J]. BMC Plant Biol, 2020, 20(1):360.DOI:10.1186/s12870-020-02562-6.
[20]
ZHENG T C, ZANG L N, DAI L J, et al. Two novel eukaryotic translation initiation factor 5A genes from Populus simonii × P.nigra confer tolerance to abiotic stresses in Saccharomyces cerevisiae[J]. J For Res, 2017, 28(3):453-463.DOI:10.1007/s11676-016-0266-6.
[21]
JALEEL C A, RIADH K, GOPI R, et al. Antioxidant defense responses:physiological plasticity in higher plants under abiotic constraints[J]. Acta Physiol Plant, 2009, 31(3):427-436.DOI:10.1007/s11738-009-0275-6.
[22]
KIM J K, PARK Y J, KONG W S, et al. Highly efficient electroporation-mediated transformation into edible mushroom Flammulina velutipes[J]. Mycobiology, 2010, 38(4):331-335.DOI:10.4489/myco.2010.38.4.331.
[23]
赵雯霞. 糙皮侧耳2-CYS PRX基因功能的研究[D]. 武汉: 华中农业大学, 2015.
ZHAO W X. Functional characterization of 2-CYS PRX in Pleurotus ostreatus[D]. Wuhan: Huazhong Agricultural University, 2015.
[24]
李素, 陈芳, 殷缘, 等. 山新杨PdPapGH12基因克隆及其响应胁迫的组织表达[J]. 森林工程, 2021, 37(4):11-21.
LI S, CHEN F, YIN Y, et al. Cloning of PdPapGH12 gene of Shanxin Poplar (Populus davidiana × P.alba var. pyramidlis) and its tissue expression in response to stress[J]. Forest Engineering, 2021, 37(4):11-21.DOI:10.16270/j.cnki.slgc.2021.04.002.
[25]
KIM K H, ALAM I, LEE K W, et al. Enhanced tolerance of transgenic tall fescue plants overexpressing 2-Cys peroxiredoxin against methyl viologen and heat stresses[J]. Biotechnol Lett, 2010, 32(4):571-576.DOI:10.1007/s10529-009-0185-0.
[26]
HONG S H, LEE S S, CHUNG J M, et al. Site-specific mutagenesis of yeast 2-Cys peroxiredoxin improves heat or oxidative stress tolerance by enhancing its chaperone or peroxidase function[J]. Protoplasma, 2017, 254(1):327-334.DOI:10.1007/s00709-016-0948-0.
[27]
TIMMERMANN B, JAROLIM S, RUSSMAYER H, et al. A new dominant peroxiredoxin allele identified by whole-genome re-sequencing of random mutagenized yeast causes oxidant-resistance and premature aging[J]. Aging (Albany NY), 2010, 2(8):475-486.DOI:10.18632/aging.100187.
[28]
王艳玲, 任艳芳, 林肖, 等. 不同浓度H2O2处理对水稻陈种子活力及幼苗生理特性的影响[J]. 江苏农业科学, 2017, 45(13):49-53.DOI:10.15889/j.issn.1002-1302.2017.13.013.
PDF(2745 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/