Effects of different irrigation methods on growth, photosynthetic characteristics and soil water transport of Mongolian pine (Pinus sylvestris var. mongolica)

LIU Yanan, LIU Yang, LAN Zaiping, TIE Niu, ZHANG Mengtao, WANG Chengde, LUO Qihui, ZHANG Chen

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (4) : 135-143.

PDF(1877 KB)
PDF(1877 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (4) : 135-143. DOI: 10.12302/j.issn.1000-2006.202107011

Effects of different irrigation methods on growth, photosynthetic characteristics and soil water transport of Mongolian pine (Pinus sylvestris var. mongolica)

Author information +
History +

Abstract

【Objective】 The growth and soil water transport of Mongolian pine (Pinus sylvestris var. mongolica) were studied under three different drip treatments (drip irrigation, flood irrigation and control), and the responses of growth, photosynthesis, transpiration and water transport to the irrigation methods were discussed to provide a reference for efficient cultivation of P. sylvestris var. mongolica in arid and semi-arid areas. 【Method】 With P. sylvestris var. mongolica of the Daqingshan National Nature Reserve in Inner Mongolia as the research object, the growth (ground diameter, tree height, crown width, head sprouting length and biomass) and photosynthetic characteristics [photosynthetic rate (Pn), transpiration rate (Tr), stomatal conductance (Gs), intercellular CO2 concentration (Ci), and water use efficiency (EWUE)] of P. sylvestris var. mongolica were compared under different irrigation methods based on One-way ANOVA; soil profile observation was used to compare the migration distance of soil water in horizontal and vertical directions under different irrigation methods and durations. 【Result】 (1) The ground diameter, tree height, crown width, head sprouting length and biomass parameters of P. sylvestris var. mongolica in the drip irrigation were 1.5 cm, 0.5 m, 10 cm, 5.9 cm and 11.5 kg higher, respectively, than those in the flood irrigation, and 3.4 cm, 0.9 m, 60.0 cm, 7.2 cm and 2.5 kg higher than those in the control, respectively. (2) The Pn, Tr, Gs and Ci values of samples under the drip irrigation were significantly higher than those under the flood irrigation and control (P < 0.05), and decreased in the following order: drip irrigation > flood irrigation > control. However, EWUE decreased in the following order: control > drip irrigation > flood irrigation, indicating P. sylvestris var. mongolica had the ability to tolerate drought under low soil water conditions. (3) After 2, 4 and 6 h irrigation, the vertical migration distance of soil moisture front and the final vertical migration distance after stopping the irrigation were deeper in the drip irrigation than in the flood irrigation. Under the two irrigation methods, the maximum horizontal migration distance of soil moisture front for the three different irrigation times in each soil layer was observed to be in the range of 0-20 cm. However, the vertical migration distance after stopping the irrigation decreased in the following order: drip irrigation > flood irrigation. (4) A few empirical models were used to simulate the profile of soil wetting body and the results confirmed that the optimal models for the drip irrigation and the flood irrigation were Polynomial (Eq.1) $M_{\mathrm{R} 1}=L_{\mathrm{MR}}\left[a_{1}\left(R_{\mathrm{MH}}-1\right)+a_{2}\left(R_{\mathrm{MH}}^{2}-1\right)+a_{3}\left(R_{\mathrm{MH}}{ }^{3}-1\right)+a_{4}\left(R_{\mathrm{MH}}^{4}-1\right)\right]$ and Baldwin and Peterson (Eq.4) $M_{\mathrm{R} 4}=a_{1}+\left[\left(R_{\mathrm{MH}}-1\right) /\left(R_{\mathrm{MH}}+1\right)\right]+a_{2}\left(R_{\mathrm{MH}}-1\right)$, respectively. Among them, is the horizontal movement distance of soil water at any position in the vertical direction; LMR is the maximum horizontal movement distance of soil water; RMH is the vertical movement of soil water at any position in the vertical direction relative distance; ai is the model parameter (i=1, 2, 3, 4).【Conclusion】 The drip irrigation was obviously better than the flood irrigation based on each evaluation index in the arid areas of the north China. After 2, 4 and 6 h irrigation, the final horizontal migration distance of soil water front above 60 cm soil layer in the drip irrigation was larger than that in the flood irrigation. The drip irrigation was beneficial to the root water absorption and the growth of P. sylvestris var. mongolica. The EWUE affects the photosynthetic characteristics of P. sylvestris var. mongolica and reasonable irrigation can improve the growth mechanisms.

Key words

Mogolian pine (Pinus sylvestris var. mongolica) / drip irrigation / flood irrigation / photosynthetic characteristics / tree growth / soil water transport / water transport simulation

Cite this article

Download Citations
LIU Yanan , LIU Yang , LAN Zaiping , et al . Effects of different irrigation methods on growth, photosynthetic characteristics and soil water transport of Mongolian pine (Pinus sylvestris var. mongolica)[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2022, 46(4): 135-143 https://doi.org/10.12302/j.issn.1000-2006.202107011

References

[1]
王显蕾, 肖璇, 李雄. 水资源综合利用问题探讨[J]. 资源节约与环保, 2015(12):16.
WANG X L, XIAO X, LI X. Discussion on comprehensive utilization of water resources[J]. Resour Econ Environ Prot, 2015(12): 16.DOI:10.16317/j.cnki.12-1377/x.2015.12.015.
[2]
贾黎明, 邢长山, 韦艳葵, 等. 地下滴灌条件下杨树速生丰产林生长与光合特性[J]. 林业科学, 2004, 40(2):61-67.
JIA L M, XING C S, WEI Y K, et al. The growth and photosynthesis of poplar trees in fast-growing and high-yield plantations with subterranean drip irrigation[J]. Sci Silvae Sin, 2004, 40(2):61-67.DOI:10.3321/j.issn:1001-7488.2004.02.011.
[3]
韦艳葵, 贾黎明, 邢长山. 滴灌在林业上应用的研究与进展[J]. 世界林业研究, 2003, 16(4):38-43.
WEI Y K, JIA L M, XING C S. A review of the research and development of the application of drip-irrigation in forestry[J]. World For Res, 2003, 16(4):38-43.DOI:10.13348/j.cnki.sjlyyj.2003.04.008.
[4]
郭慧滨, 史群. 国内外节水灌溉发展简介[J]. 节水灌溉, 1998(5):23-25.
GUO H B, SHI Q. A review of water-saving irrigation development here and abroad[J]. Water Sav Irrigation, 1998(5):23-25.
[5]
AIELLO A S, GRAVES W R. Success varies when using subirrigation instead of mist to root softwood cuttings of woody taxa[J]. J Environ Hortic, 1998, 16(1):42-47.DOI:10.24266/0738-2898-16.1.42.
[6]
CAMP C R, LAMM F R, EVANS RG, et al. Subsurface drip irrigation-past, present, and future[C]// National Irrigation Symposium. Proceedings of the 4th Decennial Symposium, Phoenix, Arizona, USA, November 14-16, 2000.
[7]
GREENLAND S, LEVIN E, DALRYMPLE J F, et al. Sustainable innovation adoption barriers:water sustainability,food production and drip irrigation in Australia[J]. Soc Responsib J, 2019, 15(6):727-741.DOI:10.1108/srj-07-2018-0181.
[8]
HEARD J W, PORKER M J, ARMSTRONG D P, et al. The economics of subsurface drip irrigation on perennial pastures and fodder production in Australia[J]. Agric Water Manag, 2012, 111:68-78.DOI:10.1016/j.agwat.2012.05.005.
[9]
ALCON F, DE MIGUEL M D, BURTON M. Duration analysis of adoption of drip irrigation technology in southeastern Spain[J]. Technol Forecast Soc Change, 2011, 78(6):991-1001.DOI:10.1016/j.techfore.2011.02.001.
[10]
KALPAKIAN J, LEGROURI A, EJEKKI F, et al. Obstacles facing the diffusion of drip irrigation technology in the Middle Atlas region of Morocco[J]. Int J Environ Stud, 2014, 71(1):63-75.DOI:10.1080/00207233.2014.881956.
[11]
车赛男. 关于工业废水污染治理途径与技术的研究[J]. 资源节约与环保, 2020(9):91-92.
CHE S N. Study on treatment approach and technology of industrial wastewater pollution[J]. Resour Econ Environ Prot, 2020(9):91-92.DOI:10.16317/j.cnki.12-1377/x.2020.09.050.
[12]
代永欣, 王林, 万贤崇. 干旱导致树木死亡机制研究进展[J]. 生态学杂志, 2015, 34(11):3228-3236.
DAI Y X, WANG L, WAN X C. Progress on researches of drought-induced tree mortality mechanisms[J]. Chin J Ecol, 2015, 34(11):3228-3236.DOI:10.13292/j.1000-4890.20151023.029.
[13]
朱玲. 智能滴灌带来林业节水新变化[J]. 中国林业, 2017(22):44-45.
ZHU L. Intelligent drip irrigation brings new changes in forestry water saving[J]. For China, 2017(22):44-45.
[14]
傅建平, 兰再平, 孙尚伟, 等. 滴灌条件下杨树人工林土壤的水分运移[J]. 林业科学, 2013, 49(6):25-29.
FU J P, LAN Z P, SUN S W, et al. Soil water movement in a poplar plantation under drip irrigation[J]. Sci Silvae Sin, 2013, 49(6):25-29.DOI:10.11707/j.1001-7488.20130604.
[15]
HANSEN E A. Irrigating short rotation intensive culture hybrid poplars[J]. Biomass, 1988, 16(4):237-250. DOI:10.1016/0144-4565(88)90029-7.
[16]
DICKMANN D I, NGUYEN P V, PREGITZER K S. Effects of irrigation and coppicing on above-ground growth,physiology,and fine-root dynamics of two field-grown hybrid poplar clones[J]. For Ecol Manag, 1996, 80(1/2/3):163-174. DOI:10.1016/0378-1127(95)03611-3.
[17]
KHAMZINA A, LAMERS J P A, VLEK P L G. Tree establishment under deficit irrigation on degraded agricultural land in the lower Amu Darya River region,Aral Sea Basin[J]. For Ecol Manag, 2008, 255(1):168-178.DOI:10.1016/j.foreco.2007.09.005.
[18]
韦庆钰, 黄海龙, 吴纯泽, 等. 3种倍性青杨扦插苗对覆膜滴肥的生长响应[J]. 南京林业大学学报(自然科学版), 2021, 45(5):93-101.
WEI Q Y, HUANG H L, WU C Z, et al. Response of Populus cathayana cutting seedlings of three ploidy types to fertilizer under film mulching and drip irrigation[J]. Natural Sciences Edition, 2021, 45(5):93-101. DOI:10.12302/j.issn.1000-2006.202012048.
[19]
白育英. 大青山水源涵养林生态效益的研究[J]. 内蒙古林业科技, 2000(2):16-19.
BAI Y Y. Study on ecological benefits of water regulation forest in Daqing Mt[J]. Inn Mong For Sci Tech, 2000(2):16-19.
[20]
庞晓燕. 内蒙古大青山自然保护区森林生态系统服务功能及其价值评估[J]. 内蒙古林业调查设计, 2017, 40(2):44-47.
PANG X Y. Forest ecosystem services and their value assessment in Daqingshan Nature Reserve, Inner Mongolia[J]. Inn Mong For Investig Des, 2017, 40(2):44-47.DOI:10.13387/j.cnki.nmld.2017.02.019.
[21]
罗云建, 王效科, 逯非. 中国主要林木生物量模型手册[M]. 北京: 中国林业出版社, 2015.
LUO Y J, WANG X K, LU F. Comprehensive database of biomass regressions for China’s tree Species[M]. Beijing: China Forestry Publishing Press, 2015.
[22]
张正斌, 山仑. 作物水分利用效率和蒸发蒸腾估算模型的研究进展[J]. 干旱地区农业研究, 1997(1):73-78.
ZHANG Z B, SHAN L. Research development in estimation models of crop water use efficiency and transpiration and evaporation[J]. Agric Reseach Arid Areas, 1997(1):73-78.
[23]
CRCENTE-CAMPO F, MARSHALL P, LEMAY V, et al. A crown profile model for Pinus radiata D. Don in northwestern Spain[J]. For Ecol Manage, 2009, 257: 2370-2379. DOI: 10.1016/j.foreco.2009.03.038.
[24]
BALDWI JR V C, PETERSON K D. Predicting the crown shape of loblolly pine trees[J]. Can J For Res, 1997, 27(1):102-107. DOI:10.1139/x96-100.
[25]
LIU Y, TRANCOSO R, MA Q, et al. Incorporating climate effects in Larix gmelinii improves stem taper models in the Greater Khingan Mountains of Inner Mongolia, northeast China[J]. For Ecol Manage, 2020, 464, 118065. DOI:10.1016/j.foreco.2020.118065.
[26]
TEAMA R D C. ‘R: A language and environment for statistical computing’, R foundation for statistical computing[J]. Computing, 2010, 14: 12-21. DOI: 10.1890/0012-9658(2002)083[3097:CFHIWS]2.0.CO;2
[27]
马铁成. 寒旱区紫花苜蓿不同灌溉方式生长特性分析[J]. 水利科学与寒区工程, 2020, 3(4):15-18.
MA T C. Analysis on the growth characteristics for alfalfa under different irrigation methods in cold and arid region[J]. Hydro Sci Cold Zone Eng, 2020, 3(4):15-18.DOI:10.3969/j.issn.1002-3305.2020.04.004.
[28]
张雅倩, 林琪, 刘家斌, 等. 干旱胁迫对不同肥水类型小麦旗叶光合特性及产量的影响[J]. 麦类作物学报, 2011, 31(4):724-730.
ZHANG Y Q, LIN Q, LIU J B, et al. Effects of drought stress on photosynthetic characteristics and yield of different fertilizer and water types of wheat[J]. J Triticeae Crops, 2011, 31(4):724-730.
[29]
井大炜, 邢尚军, 杜振宇, 等. 干旱胁迫对杨树幼苗生长、光合特性及活性氧代谢的影响[J]. 应用生态学报, 2013, 24(7):1809-1816.
JING D W, XING S J, DU Z Y, et al. Effects of drought stress on the growth,photosynthetic characteristics,and active oxygen metabolism of poplar seedlings[J]. Chin J Appl Ecol, 2013, 24(7):1809-1816.DOI:10.13287/j.1001-9332.2013.0420.
[30]
裴艳武, 黄来明, 贾小旭, 等. 黄土高原2种典型灌木地土壤水分有效性及其影响因素[J]. 土壤学报, 2019, 56(3):627-637.
PEI Y W, HUANG L M, JIA X X, et al. Soil water availability and its influencing factors in soils under two types of shrubberies typical of the Loess Plateau[J]. Acta Pedologica Sinica, 2019, 56(3):627-637. DOI:10.11766/trxb201807090294.
[31]
陈金平, 兰再平, 杨慎骄, 等. 黄河故道不同灌水方式刺槐人工林幼树水分利用效率和生长特性[J]. 生态学报, 2015, 35(8):2529-2535.
CHEN J P, LAN Z P, YANG S J, et al. Water use efficiency and growth characteristics of young trees of Robinia pseudoacacia plantation forest under different irrigation methods in old course of Yellow River area[J]. Acta Ecol Sin, 2015, 35(8):2529-2535.DOI:10.5846/stxb201306101568.
[32]
HEITHOLT J J. Water use efficiency and dry matter distribution in nitrogen-and water-stressed winter wheat[J]. Agron J, 1989, 81(3):464-469.DOI:10.2134/agronj1989.00021962008100030014x.
[33]
郑强卿, 李铭, 李鹏程, 等. 滴灌条件下沙地肉苁蓉土壤水分空间分布特性研究[J]. 安徽农业科学, 2011, 39(30):18548-18550,18600.
ZHENG Q Q, LI M, LI P C, et al. Study on the spatial distribution features of sand land soil moisture under the drip irrigation of Cistanche deserticola[J]. J Anhui Agric Sci, 2011, 39(30):18548-18550,18600.DOI:10.13989/j.cnki.0517-6611.2011.30.163.
[34]
马蒙蒙, 林青, 徐绍辉. 不同因素影响下层状土壤水分入渗特征及水力学参数估计[J]. 土壤学报, 2020, 57(2):347-358.
MA M M, LIN Q, XU S H. Water infiltration characteristics of layered soil under influences of different factors and estimation of hydraulic parameters[J]. Acta Pedologica Sinica, 2020, 57(2):347-358. DOI:10.11766/trxb201905090250.
[35]
吴丹. 沙地樟子松人工林根系及土壤养分分布特征研究[D]. 阜新: 辽宁工程技术大学, 2020.
WU D. Root system and soil nutrient distribution of Pinus sylvestris var.mongolica plantation on sandy land feature research[D]. Fuxin: Liaoning Technical University, 2020.
[36]
李豆豆, 席本野, 唐连峰, 等. 砂壤土下滴灌毛白杨幼林土壤水分运移规律与模拟[J]. 林业科学, 2018, 54(12):157-168.
LI D D, XI B Y, TANG L F, et al. Patterns of soil water movement in drip-irrigated young Populus tomentosa plantations on sandy loam soil and their simulation[J]. Sci Silvae Sin, 2018, 54(12):157-168.DOI:10.11707/j.1001-7488.20181218.
PDF(1877 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/