
Estimation of total nitrogen in young Aquilaria sinensis based on multi image features
YUAN Ying, WANG Xuefeng, WANG Tian, CHEN Feifei, HUANG Chuanteng, LIN Ling, DONG Xiaona
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2023, Vol. 47 ›› Issue (3) : 19-28.
Estimation of total nitrogen in young Aquilaria sinensis based on multi image features
【Objective】Multi-image features of young Aquilaria sinensis were extracted using computer vision technology to estimate the total nitrogen content of leaves, providing a new method for rapid and nondestructive measurement of the nitrogen nutritional status of A. sinensis. 【Method】In this study, the best histogram entropy method (KSW entropy method) and morphological processing based on the HIS (Hue-intensity-saturation) color space were used to segment an image of young A. sinensis, and the color, shape and textural features of the image were extracted. Subsequently, the partial least squares (PLS) method was used to reduce the multi-image feature dimensions, and the principal components of the image feature variables were generated. Finally, the Elman neural network (ElmanNN), optimized using the BAS algorithm, was used to estimate the total nitrogen content of young A. sinensis, and the validation results of the model were compared with those of other commonly used models. 【Result】Research showed the following: (1) focusing on the visible image of A. sinensis, the segmentation algorithm based on HIS color space was better than that based on RGB and Lab color space. (2) The PLS algorithm extracted six principal components from the image features, which reduced the dimension of the image features quickly, and effectively eliminated the multicollinearity among the feature variables. (3) The PLS-BAS-ElmanNN model proposed in this study could achieve the adaptive selection of model parameters, and had higher estimation accuracy; for instance, the R2 was 0.740 7 and the root mean square error was only 1.265 3 g/kg. The estimation accuracy of it was slightly higher than that of the PLSR and PLS-GAM models. 【Conclusion】In this study, we proposed an image processing method for young A. sinensis and constructed a PLS-BAS-ElmanNN estimation model that can stably process high-dimensional image data. This provides a new idea for monitoring the nitrogen nutrition status of young A. sinensis and has a very important practical significance for the accurate cultivation of A. sinensis.
Aquilaria sinensis / total nitrogen / computer vision / BAS-Elman / PLS
[1] |
周亚奎, 乔海莉, 战晴晴, 等. 海南白木香主要病虫害发生与防治[J]. 中国现代中药, 2017, 19(8):1102-1105.
|
[2] |
|
[3] |
刘培卫, 张玉秀, 杨云. 白木香不同种质的表型特征与苗木生长特性研究[J]. 种子, 2018, 37(3):60-62,67.
|
[4] |
唐桂兰, 刘小星, 芦建国. 氮素指数施肥对夏蜡梅幼苗生长、养分分配的影响[J]. 南京林业大学学报(自然科学版), 2017, 41(6):134-140.
|
[5] |
岳喜良, 秦健, 洑香香, 等. 氮素水平对青钱柳叶片主要次生代谢物含量和抗氧化能力的影响[J]. 南京林业大学学报(自然科学版), 2020, 44(2):35-42.
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
孙俊, 金夏明, 毛罕平, 等. 基于高光谱图像光谱与纹理信息的生菜氮素含量检测[J]. 农业工程学报, 2014, 30(10):167-173.
|
[12] |
吴伟斌, 李佳雨, 张震邦, 等. 基于高光谱图像的茶树LAI与氮含量反演[J]. 农业工程学报, 2018, 34(3):195-201.
|
[13] |
张培松, 孙毅明, 郭澎涛, 等. 基于数字图像分析技术的橡胶树叶片氮含量预测[J]. 热带作物学报, 2015, 36(12):2120-2124.
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
李红军, 张立周, 陈曦鸣, 等. 应用数字图像进行小麦氮素营养诊断中图像分析方法的研究[J]. 中国生态农业学报, 2011, 19(1):155-159.
|
[19] |
卢志宏, 武晓东, 郭利彪, 等. 基于Elman神经网络的阿拉善荒漠啮齿动物群落组成物种数量预测研究[J]. 生态环境学报, 2015, 24(12):1976-1982.
|
[20] |
|
[21] |
陈珠琳, 王雪峰. 基于图像的幼龄檀香分割与土壤速效氮诊断[J]. 林业科学, 2019, 55(12):74-83.
|
[22] |
|
[23] |
|
[24] |
祝锦霞, 邓劲松, 石媛媛, 等. 基于水稻扫描叶片图像特征的氮素营养诊断研究[J]. 光谱学与光谱分析, 2009, 29(8):2171-2175.
|
[25] |
|
[26] |
|
[27] |
杨杰, 吴中如. 观测数据拟合分析中的多重共线性问题[J]. 四川大学学报(工程科学版), 2005, 37(5):19-24.
|
/
〈 |
|
〉 |