Functional analyses of PtrHBI 1 gene in Populus trichocarpa based on CRISPR/Cas9

WANG Zhuwen, GUO Yanjiao, LI Shuang, ZHOU Chenguang, CHIANG Vincent, LI Wei

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2021, Vol. 45 ›› Issue (6) : 31-39.

PDF(4684 KB)
PDF(4684 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2021, Vol. 45 ›› Issue (6) : 31-39. DOI: 10.12302/j.issn.1000-2006.202107030

Functional analyses of PtrHBI 1 gene in Populus trichocarpa based on CRISPR/Cas9

Author information +
History +

Abstract

【Objective】 We used the CRISPR/Cas9 system to generate PtrHBI1 loss of function mutants of Populus trichocarpa in order to investigate the function of the PtrHBI1 transcription factor in wood formation. This investigation provides new clues for creating superior varieties of trees suitable for pulp and papermaking. 【Method】 Based on RNA-seq data of different cell types (cambium, xylem and phloem) of wild-type P. trichocarpa by laser capture microdissection, the bHLH transcription factor PtrHBI1 was identified. Subcellular localization of PtrHBI1 was analyzed using the stem-differentiating xylem (SDX) protoplast system of P. trichocarpa, and tissue-specific expression of PtrHBI1 was analyzed by in situ hybridization. We then used the CRISPR/Cas9 system to generate ptrhbi1 mutants of P. trichocarpa and analyzed the growth traits of ptrhbi1. Meanwhile, we performed a morphological analysis using paraffin sections and analyzed the wood composition of the mutant using the Klason acid hydrolysis method and high-performance liquid chromatography. 【Result】 According to the results, we found that PtrHBI1 was localized in the nucleus of P. trichocarpa SDX cells. The results of in situ hybridization showed that PtrHBI1 was mainly expressed in the cambium and xylem regions. The height of ptrhbi1 mutants created by CRISPR/Cas9 was significantly increased, and the internode number and stem basal diameter were significantly larger than those of the wild type during a certain period. In addition, the ptrhbi1 mutant showed a significant increase in the lumen area of per vessel cells and a significant decrease in the number of fiber cells. However, the number of vessel cells and layers of cambium cells in the ptrhbi1 mutant were similar to those in the wild type. The wood composition analysis showed that the glucose content of the ptrhbi1 mutant increased. Compared with the wild type, although the total lignin content was not significantly changed, the mass ratio of syringly to guaiacy (S/G) ratio of the mutant was significantly decreased. 【Conclusion】 PtrHBI1 was involved in regulating the growth and secondary xylem development of P. trichocarpa, which may play an important role in wood formation.

Key words

Populus trichocarpa / wood formation regulation / CRISPR/Cas9 / PtrHBI1 transcription factor

Cite this article

Download Citations
WANG Zhuwen , GUO Yanjiao , LI Shuang , et al . Functional analyses of PtrHBI 1 gene in Populus trichocarpa based on CRISPR/Cas9[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2021, 45(6): 31-39 https://doi.org/10.12302/j.issn.1000-2006.202107030

References

[1]
KO J H, KIM H T, HAN K H. Biotechnological improvement of lignocellulosic feedstock for enhanced biofuel productivity and processing[J]. Plant Biotechnol Rep, 2011, 5(1):1-7.DOI: 10.1007/s11816-010-0159-7.
[2]
许会敏, 王莉, 曹德昌, 等. 维管形成层活动周期调控研究进展[J]. 科学通报, 2015, 60(7):619-629.
XU H M, WANG L, CAO D C, et al. Research progress on the regulation of cambium activity periodicity[J]. Chin Sci Bull, 2015, 60(7):619-629.DOI: 10.1360/N972014-01037.
[3]
文静, 王春涛, 杨永平. 植物木质部次生细胞壁加厚调控的研究进展[J]. 西南林业大学学报, 2021, 41(2):182-188.
WEN J, WANG C T, YANG Y P. Advances in regulation of xylem secondary cell wall thickening in plants[J]. J Southwest For Coll, 2021, 41(2):182-188.DOI: 10.11929/j.swfu.201909077.
[4]
LIU C, YU H, RAO X L, et al. Abscisic acid regulates secondary cell-wall formation and lignin deposition in Arabidopsis thaliana through phosphorylation of NST1[J]. PNAS, 2021, 118(23): e2106367118.DOI: 10.1073/pnas.2010911118.
[5]
MARRIOTT P E, GóMEZ L D, MCQUEEN-MASON S J,. Unlocking the potential of lignocellulosic biomass through plant science[J]. New Phytol, 2016, 209(4):1366-1381.DOI: 10.1111/nph.13684.
[6]
ZHONG R, LEE C, ZHOU J, et al. A battery of transcription factors involved in the regulation of secondary cell wall biosynjournal in Arabidopsis[J]. Plant Cell, 2008, 20(10):2763-2782.DOI: 10.1105/tpc.108.061325.
[7]
ZHANG J, NIEMINEN K, SERRA J A, et al. The formation of wood and its control[J]. Curr Opin Plant Biol, 2014, 17:56-63.DOI: 10.1016/j.pbi.2013.11.003.
[8]
CHEN Y, ZHU P H, WU F, et al. Identification and characterization of the basic helix-loop-helix transcription factor family in Pinus massoniana[J]. Forests, 2020, 11(12):1292.DOI: 10.3390/f11121292.
[9]
ZHANG T, LV W, ZHANG H, et al. Genome-wide analysis of the basic Helix-Loop-Helix (bHLH) transcription factor family in maize[J]. BMC Plant Biol, 2018, 18(1):235.DOI: 10.1186/s12870-018-1441-z.
[10]
BAI M Y, FAN M, OH E, et al. A triple helix-loop-helix/basic helix-loop-helix cascade controls cell elongation downstream of multiple hormonal and environmental signaling pathways in Arabidopsis[J]. Plant Cell, 2012, 24(12):4917-4929.DOI: 10.1105/tpc.112.105163.
[11]
陈儒钢, 巩振辉, 逯明辉, 等. 植物抗逆反应中的转录因子网络研究进展[J]. 农业生物技术学报, 2010, 18(1):126-134.
CHEN R G, GONG Z H, LU M H, et al. Research advance of the transcription factors networks related to plant adverse environmental stress[J]. J Agric Biotechnol, 2010, 18(1):126-134.DOI: 10.3969/j.issn.1674-7968.2010.01.020.
[12]
TOLEDO-ORTIZ G, HUQ E, QUAIL P H. The Arabidopsis basic/helix-loop-helix transcription factor family[J]. Plant Cell, 2003, 15(8):1749-1770.DOI: 10.1105/tpc.013839.
[13]
HEIM M A, JAKOBY M, WERBER M, et al. The basic helix-loop-helix transcription factor family in plants:a genome-wide study of protein structure and functional diversity[J]. Mol Biol Evol, 2003, 20(5):735-747.DOI: 10.1093/molbev/msg088.
[14]
LEDENT V, VERVOORT M. The basic helix-loop-helix protein family:comparative genomics and phylogenetic analysis[J]. Genome Res, 2001, 11(5):754-770.DOI: 10.1101/gr.177001.
[15]
CHU X, LI M, ZHANG S, et al. HBI1-TCP20 interaction positively regulates the CEPs-mediated systemic nitrate acquisition[J]. J Integr Plant Biol, 2021, 63(5):902-912.DOI: 10.1111/jipb.13035.
[16]
CAI H, CHAI M, CHEN F, et al. HBI1 Acts downstream of ERECTA and SWR1 in regulating inflorescence architecture through the activation of the brassinosteroid and auxin signaling pathways[J]. New Phytol, 2021, 229(1):414-428.DOI: 10.1111/nph.16840.
[17]
FERRERO V, VIOLA I L, ARIEL F D, et al. Class I TCP transcription factors target the gibberellin biosynjournal gene GA20ox1 and the growth-promoting genes HBI1 and PRE6 during thermomorphogenic growth in Arabidopsis[J]. Plant Cell Physiol, 2019, 60(8):1633-1645.DOI: 10.1093/pcp/pcz137.
[18]
WANG S, LI L, XU P, et al. CRY1 interacts directly with HBI1 to regulate its transcriptional activity and photomorphogenesis in Arabidopsis[J]. J Exp Bot, 2018, 69(16):3867-3881.DOI: 10.1093/jxb/ery209.
[19]
FAN M, BAI M Y, KIM J G, et al. The bHLH transcription factor HBI1 mediates the trade-off between growth and pathogen-associated molecular pattern-triggered immunity in Arabidopsis[J]. Plant Cell, 2014, 26(2):828-841.DOI: 10.1105/tpc.113.121111.
[20]
LI Z, LIU Z B, XING A, et al. Cas9-guide RNA directed genome editing in soybean[J]. Plant Physiol, 2015, 169(2):960-970.DOI: 10.1104/pp.15.00783.
[21]
HSU P D, LANDER E S, ZHANG F. Development and applications of CRISPR-Cas9 for genome engineering[J]. Cell, 2014, 157(6):1262-1278.DOI: 10.1016/j.cell.2014.05.010.
[22]
ALI Z, ABUL-FARAJ A, LI L, et al. Efficient virus-mediated genome editing in plants using the CRISPR/Cas9 system[J]. Mol Plant, 2015, 8(8):1288-1291.DOI: 10.1016/j.molp.2015.02.011.
[23]
DOUDNA J A, CHARPENTIER E. The new frontier of genome engineering with CRISPR-Cas9[J]. Science, 2014, 346(6213):1258096.DOI: 10.1126/science.1258096.
[24]
FAN D, LIU T, LI C, et al. Efficient CRISPR/Cas9-mediated targeted mutagenesis in Populus in the first generation[J]. Sci Rep, 2015, 5:12217.DOI: 10.1038/srep12217.
[25]
ZHOU X H, JACOBS T B, XUE L J, et al. Exploiting SNPs for biallelic CRISPR mutations in the outcrossing woody perennial Populus reveals 4-coumarate:CoA ligase specificity and redundancy[J]. New Phytol, 2015, 208(2):298-301.DOI: 10.1111/nph.13470.
[26]
LIN Y C, LI W, CHEN H, et al. A simple improved-throughput xylem protoplast system for studying wood formation[J]. Nat Protoc, 2014, 9(9):2194-2205.DOI: 10.1038/nprot.2014.147.
[27]
JAVELLE M, MARCO C F, TIMMERMANS M. In situ hybridization for the precise localization of transcripts in plants[J]. J Vis Exp, 2011(57):e3328.DOI: 10.3791/3328.
[28]
WANG Z, MAO Y, GUO Y, et al. MYB transcription Factor161 mediates feedback regulation of Secondary wall-associated NAC-Domain1 family genes for wood formation[J]. Plant Physiol, 2020, 184(3):1389-1406.DOI: 10.1104/pp.20.01033.
[29]
LI S, ZHEN C, XU W, et al. Simple,rapid and efficient transformation of genotype Nisqually-1:a basic tool for the first sequenced model tree[J]. Sci Rep, 2017, 7(1):2638.DOI: 10.1038/s41598-017-02651-x.
[30]
HEIM M A, JAKOBY M, WERBER M, et al. The basic helix-loop-helix transcription factor family in plants:a genome-wide study of protein structure and functional diversity[J]. Mol Biol Evol, 2003, 20(5):735-747.DOI: 10.1093/molbev/msg088.
[31]
LI L, ZHOU Y, CHENG X, et al. Combinatorial modification of multiple lignin traits in trees through multigene cotransformation[J]. PNAS, 2003, 100(8):4939-4944.DOI: 10.1073/pnas.0831166100.
[32]
SAITO K, WATANABE Y, SHIRAKAWA M, et al. Direct mapping of morphological distribution of syringyl and guaiacyl lignin in the xylem of maple by time-of-flight secondary ion mass spectrometry[J]. Plant J, 2012, 69(3):542-552.DOI: 10.1111/j.1365-313x.2011.04811.x.
[33]
GUI J, LAM P Y, TOBIMATSU Y, et al. Fibre-specific regulation of lignin biosynjournal improves biomass quality in Populus[J]. New Phytol, 2020, 226(4):1074-1087.DOI: 10.1111/nph.16411.
[34]
ZHAO K, LI S, YAO W, et al. Characterization of the basic helix-loop-helix gene family and its tissue-differential expression in response to salt stress in poplar[J]. Peer J, 2018, 6:e4502.DOI: 10.7717/peerj.4502.
[35]
CHEN F, DIXON R A. Lignin modification improves fermentable sugar yields for biofuel production[J]. Nat Biotechnol, 2007, 25(7):759-761.DOI: 10.1038/nbt1316.
[36]
FREUDENBERG K. Lignin:its constitution and formation from p-Hydroxycinnamyl alcohols:lignin is duplicated by dehydrogenation of these alcohols;intermediates explain formation and structure[J]. Science, 1965, 148(3670):595-600.DOI: 10.1126/science.148.3670.595.
[37]
SARKANEN K V. Renewable resources for the production of fuels and chemicals[J]. Science, 1976, 191(4228):773-776.
[38]
LI L, CHENG X F, LESHKEVICH J, et al. The last step of syringyl monolignol biosynjournal in angiosperms is regulated by a novel gene encoding sinapyl alcohol dehydrogenase[J]. Plant Cell, 2001, 13(7):1567. DOI: 10.1105/tpc.13.7.1567.
[39]
CHIANG V L. From rags to riches[J]. Nat Biotech, 2002, 20(6):557. DOI: 10.1038/nbt0602-557.
[40]
STEWART J J, AKIYAMA T, CHAPPIE C, et al. The effects on lignin structure of overexpression of ferulate 5-hydroxylase in hybrid poplar1[J]. Plant Physio, 2009, 150(2):621-635. DOI: 10.1104/pp.109.137059.
[41]
康向阳. 林木遗传育种研究进展[J]. 南京林业大学学报(自然科学版), 2020, 44(3):1-10.
KANG X Y. Research progress of forest genetics and tree breeding[J]. J Nanjing For Univ (Nat Sci Ed), 2020, 44(3):1-10.DOI: 10.3969/j.issn.1000-2006.202002033.

RIGHTS & PERMISSIONS

Copyright reserved © 2021.
PDF(4684 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/