Effects of soil water content on leaf physiology and fruit quality of blueberry

SONG Zejun, LI Peipei, YUAN Lanfang, GUO Xiaolan, WANG Delu

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2023, Vol. 47 ›› Issue (3) : 147-156.

PDF(1757 KB)
PDF(1757 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2023, Vol. 47 ›› Issue (3) : 147-156. DOI: 10.12302/j.issn.1000-2006.202107039

Effects of soil water content on leaf physiology and fruit quality of blueberry

Author information +
History +

Abstract

【Objective】 The effects of soil water content on the leaf physiology and fruit quality of blueberries were studied. 【Method】 In this study, a 5-year-old Vaccinium ashei plant was used to analyze the effects of different soil water content on the plant physiology and fruit quality of blueberries using a manual control test. 【Result】 The results showed that the contents of malondialdehyde (MDA), proline and soluble sugar in blueberry leaves initially decreased and then increased with an increase in soil water content, while the activity of the superoxide dismutase (SOD) showed an “M”-type trend, and the chlorophyll content initially increased and then decreased. The single fruit weight of blueberry fruits showed an “S”-type change trend, the contents of anthocyanin and vitamin C (VC) in fruits increased initially and then decreased, and the content of soluble solids (SSC) decreased initially and then increased. The leaf physiology and fruit quality of blueberries were significantly affected when the soil relative water content was lower than 35%-40% or higher than 95%. The MDA, proline and soluble sugar contents in the leaves significantly increased; however, the chlorophyll and SOD contents decreased, and the chlorophyll content decreased significantly. The accumulation of anthocyanins and VC in fruits decreased significantly, whereas SSC increased. The weight of the blueberry fruits increased with soil water content. When the soil water content reached 65%-70%, the weight of the blueberry fruits did not increase significantly. Based on the membership function method, a soil moisture content of 65%-70% was considered suitable for the blueberry growth. Among the four blueberry varieties, the difference between the normal growth gradient of ‘Gardenblue’and ‘Baldwin’ in T3 treatment (65%-70%) and strong stress conditions of T1 (35%-40%) and T5 (95%-100%) was greater than that of ‘Brightwell’ and ‘S13’.‘Gardenblue’ and ‘Baldwin’ had slightly lower stress resistance to soil water, while ‘Brightwell’ and ‘S13’ had slightly better stress resistance. In the fruit growing stage, the increasing soil water content was beneficial to improve the quality of ‘Gardenblue’ and ‘Brightwell’ fruits. A comprehensive analysis showed that plants of all varieties were in the optimum water environment in T3 treatment. 【Conclusion】 Both too high and too low soil water content could affect the physiological and biochemical characteristics of blueberry leaves and fruit quality. Considering the requirements of the high yield and fruit quality, the optimal soil water content was 65%-70%.

Key words

blueberry / soil water content / physiological index / fruit quality / Guizhou

Cite this article

Download Citations
SONG Zejun , LI Peipei , YUAN Lanfang , et al . Effects of soil water content on leaf physiology and fruit quality of blueberry[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2023, 47(3): 147-156 https://doi.org/10.12302/j.issn.1000-2006.202107039

References

[1]
ZHENG Y P, LI R, SUN Y, et al. The optimal temperature for the growth of blueberry (Vaccinium corymbosum L.)[J]. Pak J Bot, 49(3):965-979, 2017.DOI:10.3969/j.issn.1672-8289.2016.01.072.
[2]
韦继光, 贾明云, 蒋佳峰, 等. 不同生物质炭对蓝莓幼苗叶片光合性能和生长的影响[J]. 植物资源与环境学报, 2023, 32(1):69-76.
WEI J G, JIA M Y, JIANG J F, et al. Effects of different biochars on leaf photosynthetic characteristics and growth of blueberry (Vaccinium spp.) seedlings[J]. J Plant Resour Environ, 2023, 32(1):69-76.DOI: 10.3969/j.issn.1674-7895.2023.01.08.
[3]
聂飞, 文光琴, 朱忠荣, 等. 蓝莓优质苗组培技术研究[J]. 贵州农业科学, 2010, 38(11):41-43.
NIE F, WEN G Q, ZHU Z R, et al. Study on tissue culture of quality blueberry plantlets[J]. Guizhou Agric Sci, 2010, 38(11):41-43.DOI: 10.3969/j.issn.1001-3601.2010.11.012.
[4]
王亮, 韦继光, 葛春峰, 等. 基于SSR标记分析蓝莓品种‘蓝美1号’自由授粉子代遗传多样性及群体遗传结构[J]. 植物资源与环境学报, 2022, 31(3):35-43.
WANG L, WEI J G, GE C F, et al. Analysis on genetic diversity and population genetic structure of open-pollinated progenies of Vaccinium corymbosum ‘Lanmei 1’based on SSR marker[J]. J Plant Resour Environ, 2022, 31(3):35-43.DOI: 10.3969/j.issn.1674-7895.2022.03.05.
[5]
古咸彬, 郭书艳, 黄武权, 等. 设施栽培对蓝莓光合作用与果实品质的影响[J]. 浙江农业科学, 2020, 61(10):2033-2036,2080.
GU X B, GUO S Y, HUANG W Q, et al. Effects of facility cultivation on photosynthesis and fruit quality of blueberry[J]. J Zhejiang Agric Sci, 2020, 61(10):2033-2036,2080.DOI: 10.16178/j.issn.0528-9017.20201024.
[6]
韦继光, 曾其龙, 姜燕琴, 等. 干旱和淹水处理对蓝浆果生长和光合特性的影响[J]. 植物资源与环境学报, 2015, 24(1):54-60.
WEI J G, ZENG Q L, JIANG Y Q, et al. Influence of drought and flooding treatments on growth and photosynthetic characteristics of blueberry(Vaccinium spp.)[J]. J Plant Resour Environ, 2015, 24(1):54-60.DOI: 10.3969/j.issn.1674-7895.2015.01.08.
[7]
吴林, 李亚东, 张志东, 等. 三种类型越桔在淹水逆境下生理及形态反应的比较[J]. 园艺学报, 1997, 24(3):287-288.
WU L, LI Y D, ZHANG Z D, et al. A comparison of physiological and morphological reactions of three types of blueberries to flooding stresses[J]. Acta Hortic Sin, 1997, 24(3):287-288.
[8]
吴林, 李亚东, 张志东, 等. 三种类型越桔对干旱胁迫的生理反应[J]. 吉林农业大学学报, 1998, 20(2):1-4.
WU L, LI Y D, ZHANG Z D, et al. Physiological responses of three types of blueberries on water stress[J]. J Jilin Agric Univ, 1998, 20(2):1-4.
[9]
马琳娜, 吴林, 刘海广. 水分胁迫下越橘品种‘北陆’和‘蓝丰’的生理反应[J]. 安徽农业科学, 2010, 38(16):8434-8435,8461.
MA L N, WU L, LIU H G. Physiological responses of blueberries cv.northland and bluecrop under water stress[J]. J Anhui Agric Sci, 2010, 38(16):8434-8435,8461.DOI: 10.13989/j.cnki.0517-6611.2010.16.124.
[10]
李根柱, 张自川, 郑云普, 等. 五种北高丛蓝莓对干旱胁迫的生理响应及其耐旱性评价[J]. 北方园艺, 2016(24):10-14.
LI G Z, ZHANG Z C, ZHENG Y P, et al. Physiological response to drought stress and drought tolerance evaluation of five north high-bush blueberry varieties[J]. North Hortic, 2016(24):10-14.DOI: 10.11937/bfyy.201624003.
[11]
李小方, 张志良. 植物生理学实验指导[M]. 5版. 北京: 高等教育出版社, 2016.
LI X F, ZHANG Z L. Experimental instruction of plant physiology[M]. 5th ed. Beijing: Higher Education Press, 2016.
[12]
胡小京, 刘玉彩, 裴芸, 等. 水分胁迫对野百合幼苗生理特性的影响[J]. 河南农业科学, 2020, 49(1):111-117.
HU X J, LIU Y C, PEI Y, et al. Effects of soil water stress on physiological characteristics of Lilium brownii seedlings[J]. J Henan Agric Sci, 2020, 49(1):111-117.DOI: 10.15933/j.cnki.1004-3268.2020.01.015.
[13]
梁文斌, 聂东伶, 吴思政, 等. 水分胁迫对短梗大参生理生化特征的影响[J]. 经济林研究, 2016, 34(3):99-104,186.
LIANG W B, NIE D L, WU S Z, et al. Effects of water stress on physiological and biochemical characteristics in Macropanax rosthornii[J]. Nonwood For Res, 2016, 34(3):99-104,186.DOI: 10.14067/j.cnki.1003-8981.2016.03.014.
[14]
刘国银. 不同土壤含水量对芒果叶片及果实的影响[D]. 海口: 海南大学, 2014.
LIU G Y. Effects of different soil water content on mango leaves and fruits[D]. Haikou: Hainan University, 2014.
[15]
李畅, 苏家乐, 刘晓青, 等. 旱涝交替胁迫对杜鹃花生理特性的影响[J]. 江苏农业学报, 2019, 35(2):412-419.
LI C, SU J L, LIU X Q, et al. Effects of alternate flooding and drought stress on physiological character-istics in Azalea[J]. Jiangsu J Agric Sci, 2019, 35(2):412-419.DOI: 10.3969/j.issn.1000-4440.2019.02.023.
[16]
古丽江·许库尔汗, 孙雅丽, 阿依古丽·铁木儿, 等. 不同越橘品种在新疆干旱条件下的光合生理响应[J]. 南方农业学报, 2015, 46(12):2153-2158.
Gulijiang Xukuerhan, SUN Y L, Ayihuli iemuer, et al. Photosynthetic physiological responses of Vaccinium spp.under drought stress in Xinjiang[J]. J South Agric, 2015, 46(12):2153-2158.DOI: 10.3969/j:issn.2095-1191.2015.12.2153.
[17]
石超, 唐婉, 马玉磊, 等. 4种连翘属植物对土壤含水量变化的生理反应[J]. 西北林学院学报, 2012, 27(6):8-11,37.
SHI C, TANG W, MA Y L, et al. Physiological responses of four Forsythia species to soil moisture[J]. J Northwest For Univ, 2012, 27(6):8-11,37.DOI: 10.3969/j.issn.1001-7461.2012.06.02.
[18]
徐云岭, 余叔文. 苜蓿愈伤组织盐适应过程中的溶质积累[J]. 植物生理学报, 1992, 18(1):93-99.
XU Y L, YU S W. Solute accumulation in the process of adaptation of alfalfa callus to NaCl[J]. Physiol Mol Biol Plants, 1992, 18(1):93-99.DOI:CNKI:SUN:ZWSI.0.1992-01-013.
[19]
蒲光兰, 胡学华, 周兰英, 等. 水分胁迫下乌桕离体叶片的生理生化特性[J]. 经济林研究, 2004, 22(2):20-23.
PU G L, HU X H, ZHOU L Y, et al. Physiological and biochemical characteristics of tallowtree in vitro under moisture stress condition[J]. Econ For Res, 2004, 22(2):20-23.DOI: 10.3969/j.issn.1003-8981.2004.02.006.
[20]
曾艳. 3个榉树品种对水分胁迫的生理响应[D]. 长沙: 中南林业科技大学, 2018.
ZENG Y. The physiological response of three Zelkova schneideriana varieties to water stress[D]. Changsha: Central South University of Forestry & Technology, 2018.
[21]
李乃伟, 束晓春, 张明霞, 等. 土壤含水量对红豆杉紫杉醇含量及相关生理指标的影响[J]. 南京林业大学学报(自然科学版), 2011, 35(3):75-78.
LI N W, SHU X C, ZHANG M X, et al. Effects of soil moisture on taxol content and related physiological indexes of Taxus media cv.Hicksii[J]. J Nanjing For Univ (Nat Sci Ed), 2011, 35(3):75-78.DOI: 10.3969/j.issn.1000-2006.2011.03.015.
[22]
焦娟玉, 陈珂, 尹春英. 土壤含水量对麻疯树幼苗生长及其生理生化特征的影响[J]. 生态学报, 2010, 30(16):4460-4466.
JIAO J Y, CHEN K, YIN C Y. Effects of soil moisture content on growth, physiological and biochemical characteristics of Jatropha curcas L.[J]. Acta Ecolo Sinica, 2010, 30(16):4460-4466. DOI:http://210.75.237.14/handle/351003/22414.
[23]
曹昀, 纪欣圣, 国志昌, 等. 土壤水分含量对虉草幼苗保护酶与渗透调节物质的影响[J]. 干旱区地理, 2018, 41(4):780-785.
CAO Y, JI X S, GUO Z C, et al. Effects of soil moisture content on antioxidase and osmoregulation substrate content of Phalaris arundinacea seedlings[J]. Arid Land Geogr, 2018, 41(4):780-785.DOI: 10.13826/j.cnki.cn65-1103/x.2018.04.013.
[24]
黄晓蓉, 李玮婷, 刘刚, 等. 水分胁迫对楠木幼苗抗逆生理特性的影响[J]. 北方园艺, 2015(7):68-71.
HUANG X R, LI W T, LIU G, et al. Effect of water stress on growth and physiological characteristics of Phoebe zhennan S.Lee et F.N.Wei[J]. North Hortic, 2015(7):68-71.DOI: 10.11937/bfyy.201507022.
[25]
张任凡, 樊美丽, 魏凌云, 等. 水分条件对陕西安康地区枇杷幼果期生理的影响[J]. 园艺学报, 2015, 42(4):778-784.
ZHANG R F, FAN M L, WEI L Y, et al. Effects of moisture conditions on the physiological indexes of young-fruit stage loquat in north marginal area[J]. Acta Hortic Sin, 2015, 42(4):778-784.DOI: 10.16420/j.issn.0513-353x.2014-1031.
[26]
刘洁, 万仲武, 曹兵, 等. 不同滴灌水肥处理对灵武长枣果实品质的影响[J]. 节水灌溉, 2014(8):25-28.
LIU J, WAN Z W, CAO B, et al. Effects of drip irrigation water and fertilizer treatment on fruit quality of Lingwu jujube[J]. Water Sav Irrigation, 2014(8):25-28.DOI:CNKI:SUN:JSGU.0.2014-08-009
[27]
杨昌钰, 张芮, 蔺宝军, 等. 水分胁迫对鲜食葡萄果实品质影响的研究进展[J]. 农业工程, 2020, 10(1):86-91.
YANG C Y, ZHANG R, LIN B J, et al. Review of effects of water stress on fruit quality of table grapes[J]. Agric Eng, 2020, 10(1):86-91.DOI:CNKI:SUN:NYGE.0.2020-01-022.
[28]
张帅, 张芮, 张小艳, 等. 全生育期水分胁迫对设施葡萄果实品质的影响[J]. 水利规划与设计, 2019(6):82-86.
ZHANG S, ZHANG R, ZHANG X Y, et al. Effects of water stress on grape quality during whole growth period[J]. Water Resour Plan Des, 2019(6):82-86.DOI: 10.3969/j.issn.1672-2469.2019.06.022.
[29]
ACEVEDO-OPAZO C, ORTEGA-FARIAS S, FUENTES S. Effects of grapevine (Vitis vinifera L.) water status on water consumption,vegetative growth and grape quality:An irrigation scheduling application to achieve regulated deficit irrigation[J]. Agric Water Manag, 2010, 97(7):956-964.DOI: 10.1016/j.agwat.2010.01.025.
[30]
苏学德, 李铭, 郭绍杰, 等. 不同灌水处理对克瑞森无核葡萄光合特性及果实品质的影响[J]. 安徽农业科学, 2011, 39(30):18649-18652.
SU X D, LI M, GUO S J, et al. Effect of different irrigation treatment on the photosynthetic characteristics and fruit quality of crimson seedless grape in Gobi soil[J]. J Anhui Agric Sci, 2011, 39(30):18649-18652.DOI: 10.13989/j.cnki.0517-6611.2011.30.230.
[31]
赵金梅, 高贵田, 薛敏, 等. 不同品种猕猴桃果实的品质及抗氧化活性[J]. 食品科学, 2014, 35(9):118-122.
ZHAO J M, GAO G T, XUE M, et al. Fruit quality and antioxidant activity of different kiwifruit varieties[J]. Food Sci, 2014, 35(9):118-122.DOI: 10.7506/spkx1002-6630-201409024.
[32]
张钥, 王呈阳, 周嘉玲, 等. 不同水分调亏处理对葡萄果皮酚类物质的影响[J]. 果树学报, 2021, 38(8):1296-1307.
ZHANG Y, WANG C Y, ZHOU J L, et al. Effects of different regulated deficit irrigation treatments on phenols in grape berries[J]. J Fruit Sci, 2021, 38(8):1296-1307.DOI: 10.13925/j.cnki.gsxb.20200483.
[33]
QI H Y, LI T L, ZHANG J, et al. Effects on sucrose metabolism,dry matter distribution and fruit quality of tomato under water deficit[J]. Agric Sci China, 2003, 2(11):1253-1258.
[34]
KAN I. Yield quality and irrigation with saline water under environmental limitations:The case of processing tomatoes in California[J]. Agric Econ, 2007, 38(1):57-66.DOI: 10.1111/j.1574-0862.2007.00281.x.
[35]
孙莹, 侯智霞, 苏淑钗, 等. ABA、GA3和NAA对蓝莓生长发育和花青苷积累的影响[J]. 华南农业大学学报, 2013, 34(1):6-11.
SUN Y, HOU Z X, SU S C, et al. Effects of ABA,GA3 and NAA on fruit development and anthocyanin accumulation in blueberry[J]. J South China Agric Univ, 2013, 34(1):6-11.DOI: 10.7671/j.issn.1001-411X.2013.01.002.
[36]
李双双, 王德炉, 赵迪. 水肥耦合对蓝莓果实产量及品质的影响[J]. 西北林学院学报, 2017, 32(6):131-139.
LI S S, WANG D L, ZHAO D. Effects of water-fertilizer coupling on yield and fruit quality of blueberry[J]. J Northwest For Univ, 2017, 32(6):131-139.DOI: 10.3969/j.issn.1001-7461.2017.06.20.
[37]
RIBERA-FONSECA A, JORQUERA-FONTENA E, CASTRO M, et al. Exploring VIS/NIR reflectance indices for the estimation of water status in highbush blueberry plants grown under full and deficit irrigation[J]. Sci Hortic, 2019, 256:108557.DOI: 10.1016/j.scienta.2019.108557.
PDF(1757 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/