Effects of long-term nitrogen addition on soil carbon, nitrogen, phosphorus and extracellular enzymes in Larix gmelinii and Fraxinus mandshurica plantations

ZHAO Kaige, ZHOU Zhenghu, JIN Ying, WANG Chuankuan

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (5) : 177-184.

PDF(2119 KB)
PDF(2119 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (5) : 177-184. DOI: 10.12302/j.issn.1000-2006.202108018

Effects of long-term nitrogen addition on soil carbon, nitrogen, phosphorus and extracellular enzymes in Larix gmelinii and Fraxinus mandshurica plantations

Author information +
History +

Abstract

【Objective】Anthropogenic nitrogen (N) deposition is expected to continuously increase, which has significant effects on material circulation in forest ecosystems. The objectives of the current study were to explore the responses of microbial biomass and extracellular enzymes to long-term N addition and the regulation of tree species.【Method】A long-term (16-year) N addition experiment with a N addition rate of 10 g/(m2·a) in larch(Larix gmelinii) and ash(Fraxinus mandshurica) plantations was conducted at the Maoershan Forest Ecosystem Research Station, Heilongjiang Province, Northeast China. Soil C, N and P fractions, microbial biomass, and C-, N- and P-cycling related extracellular enzymes were investigated in control and N added plots.【Result】Results show that long-term N addition significantly increased the soil inorganic N but reduced the soil microbial biomass C and N in both plantations. N addition inhibited the activities of β-1,4-glucosidase, peroxidase and phenol oxidase in the F. mandshurica stand but had no effect on these C-degrading enzymes in the L. gmelinii stand. Regression analysis showed that microbial biomass and C-degrading enzymes (β-1,4-glucosidase, peroxidase and phenol oxidase) consistently decreased with decreasing soil pH. N-acetyl-β-glucosaminidase showed a negative response to N addition in the L. gmelinii stand but displayed a positive response to N addition in the F. mandshurica stand. However, N addition had no effect on the activity of acid phosphatase, total organic C, C fractions measured by an acid hydrolysis approach, total N, total P, and available P.【Conclusion】Long-term N addition has altered the soil microbial biomass and C-degrading enzymes in the L. gmelinii and the F. mandshurica plantation through soil acidification approach, while the N effects on extracellular enzymes are species-specific. This may have resulted from the differences in litter quality and mycorrhizal types between the L. gmelinii and the F. mandshurica. The inhibition of N addition on the microbial biomass and the C-degrading enzymes did not increase the soil organic C content and alter the C fractions. The mechanism for this phenomenon may be revealed by the formation and stabilization of soil organic C in a future study.

Key words

larch (Larix gmelinii) / ash(Fraxinus mandshurica) / plantations / nitrogen addition / soil organic carbon / extracellular enzymes / soil microorganism

Cite this article

Download Citations
ZHAO Kaige , ZHOU Zhenghu , JIN Ying , et al. Effects of long-term nitrogen addition on soil carbon, nitrogen, phosphorus and extracellular enzymes in Larix gmelinii and Fraxinus mandshurica plantations[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2022, 46(5): 177-184 https://doi.org/10.12302/j.issn.1000-2006.202108018

References

[1]
吕超群, 田汉勤, 黄耀. 陆地生态系统氮沉降增加的生态效应[J]. 植物生态学报, 2007, 31(2): 205-218.
C Q, TIAN H Q, HUANG Y. Ecological effects of increased nitrogen deposition in terrestrial ecosystems[J]. Chin J Plant Ecol, 2007, 31(2): 205-218. DOI:10.17521/cjpe.2007.0025.
[2]
周晓兵, 张元明. 干旱半干旱区氮沉降生态效应研究进展[J]. 生态学报, 2009, 29(7): 3835-3845.
ZHOU X B, ZHANG Y M. Review on the ecological effects of N deposition in arid and semi-arid areas[J]. Acta Ecol Sin, 2009, 29(7): 3835-3845. DOI:10.3321/j.issn:1000-0933.2009.07.046.
[3]
李延茂, 胡江春, 汪思龙, 等. 森林生态系统中土壤微生物的作用与应用[J]. 应用生态学报, 2004, 15(10): 1943-1946.
LI Y M, HU J C, WANG S L, et al. Function and application of soil microorganisms in forest ecosystem[J]. Chin J Appl Ecol, 2004, 15(10): 1943-1946. DOI:10.13287/j.1001-9332.2004.0402.
[4]
SUN S, XING F, ZHAO H, et al. Response of bacterial community to simulated nitrogen deposition in soils and a unique relationship between plant species and soil bacteria in the Songnen grassland in northeastern China[J]. J Soil Sci Plant Nutr, 2014, 14(3): 565-580. DOI:10.4067/s0718-95162014005000045.
[5]
LIU J, WU N, WANG H, et al. Nitrogen addition affects chemical compositions of plant tissues, litter and soil organic matter[J]. Ecology, 2016, 97(7): 1796-1806. DOI:10.1890/15-1683.1.
[6]
SUN S Q, WU Y H, ZHANG J, et al. Soil warming and nitrogen deposition alter soil respiration, microbial community structure and organic carbon composition in a coniferous forest on eastern Tibetan Plateau[J]. Geoderma, 2019, 353: 283-292. DOI:10.1016/j.geoderma.2019.07.023.
[7]
周正虎, 王传宽. 微生物对分解底物碳氮磷化学计量的响应和调节机制[J]. 植物生态学报, 2016, 40(6): 620-630.
ZHOU Z H, WANG C K. Responses and regulation mechanisms of microbial decomposers to substrate carbon, nitrogen, and phosphorus stoichiometry[J]. Chin J Plant Ecol, 2016, 40(6): 620-630. DOI:10.17521/cjpe.2015.0449.
[8]
SINSABAUGH R L, LAUBER C L, WEINTRAUB M N, et al. Stoichiometry of soil enzyme activity at global scale[J]. Ecol Lett, 2008, 11(11): 1252-1264. DOI:10.1111/j.1461-0248.2008.01245.x.
[9]
SINSABAUGH R L, HILL B H, FOLLSTAD S J J. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment[J]. Nature, 2009, 462(7274): 795-798. DOI:10.1038/nature08632.
[10]
ZHOU Z H, WANG C K, ZHENG M H, et al. Patterns and mechanisms of responses by soil microbial communities to nitrogen addition[J]. Soil Biol Biochem, 2017, 115: 433-441. DOI:10.1016/j.soilbio.2017.09.015.
[11]
VESTERDAL L, SCHMIDT I K, CALLESEN I, et al. Carbon and nitrogen in forest floor and mineral soil under six common European tree species[J]. For Ecol Manag, 2008, 255(1): 35-48. DOI:10.1016/j.foreco.2007.08.015.
[12]
BRZOSTEK E R, DRAGONI D, BROWN Z A, et al. Mycorrhizal type determines the magnitude and direction of root-induced changes in decomposition in a temperate forest[J]. New Phytol, 2015, 206(4): 1274-1282. DOI:10.1111/nph.13303.
[13]
LIN G, MCCORMACK M L, MA C, et al. Similar below-ground carbon cycling dynamics but contrasting modes of nitrogen cycling between arbuscular mycorrhizal and ectomycorrhizal forests[J]. New Phytol, 2017, 213(3): 1440-1451. DOI:10.1111/nph.14206.
[14]
贺梦莹, 董利虎, 李凤日. 长白落叶松-水曲柳混交林不同混交方式单木冠长预测模型[J]. 南京林业大学学报(自然科学版), 2021, 45(4): 13-22.
HE M Y, DONG L H, LI F R. Tree crown length prediction models for Larix olgensis and Fraxinus mandshurica in mixed plantations with different mixing methods[J]. J Nanjing For Univ (Nat Sci Ed), 2021, 45(4): 13-22. DOI:10.12302/j.issn.1000-2006.202005043.
[15]
盛后财, 姚月锋, 蔡体久, 等. 物候变化对落叶松人工林降雨分配过程中钾和钠离子迁移的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(6): 143-150.
SHENG H C, YAO Y F, CAI T J, et al. Effects of phenoseason on transfer of potassium and sodium ions in the process of rainfall redistribution in larch (Larix gmelinii) plantations[J]. J Nanjing For Univ (Nat Sci Ed), 2021, 45(6): 143-150. DOI:10.12302/j.issn.1000-2006.202102012.
[16]
王薪琪, 王传宽. 东北5种温带人工林表层土壤碳氮含量的分异[J]. 应用生态学报, 2019, 30(6): 1911-1918.
WANG X Q, WANG C K. Variations in topsoil carbon and nitrogen contents of five temperate plantations in northeast China[J]. Chin J Appl Ecol, 2019, 30(6): 1911-1918. DOI:10.13287/j.1001-9332.201906.003.
[17]
COTRUFO M F, WALLENSTEIN M D, BOOT C M, et al. The Microbial efficiency-matrix stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter?[J]. Glob Change Biol, 2013, 19(4): 988-995. DOI:10.1111/gcb.12113.
[18]
JIN Y, WANG C K, ZHOU Z H, et al. Contrasting responses of hydraulic traits between leaf and branch to 16-year nitrogen addition in a larch plantation[J]. For Ecol Manag, 2020, 475: 118461. DOI:10.1016/j.foreco.2020.118461.
[19]
WANG Z Q, GUO D L, WANG X R, et al. Fine root architecture, morphology, and biomass of different branch orders of two Chinese temperate tree species[J]. Plant Soil, 2006, 288(1/2): 155-171. DOI:10.1007/s11104-006-9101-8.
[20]
SUN Y, GU J C, ZHUANG H F, et al. Effects of ectomycorrhizal colonization and nitrogen fertilization on morphology of root tips in a Larix gmelinii plantation in northeastern China[J]. Eco Res, 2010, 25(2): 295-302. DOI:10.1007/s11284-009-0654-x.
[21]
ROVIRA P, VALLEJO V R. Labile and recalcitrant pools of carbon and nitrogen in organic matter decomposing at different depths in soil: an acid hydrolysis approach[J]. Geoderma, 2002, 107(1/2): 109-141. DOI:10.1016/S0016-7061(01)00143-4.
[22]
VANCE E D, BROOKES P C, JENKINSON D S. An extraction method for measuring soil microbial biomass C[J]. Soil Biol Biochem, 1987, 19(6): 703-707. DOI:10.1016/0038-0717(87)90052-6.
[23]
MARTENS D A, JOHANSON J B, FRANKENBERGER W T JR. Production and persistence of soil enzymes with repeated addition of organic residues[J]. Soil Sci, 1992, 153(1): 53-61. DOI:10.1097/00010694-199201000-00008.
[24]
KNOPS J M H, BRADLEY K L, WEDIN D A. Mechanisms of plant species impacts on ecosystem nitrogen cycling[J]. Ecol Lett, 2002, 5(3): 454-466. DOI:10.1046/j.1461-0248.2002.00332.x.
[25]
HUANG Z Q, CLINTON P W, DAVIS M R. Post-harvest residue management effects on recalcitrant carbon pools and plant biomarkers within the soil heavy fraction in Pinus radiata plantations[J]. Soil Bio Biochem, 2011, 43(2): 404-412. DOI:10.1016/j.soilbio.2010.11.008.
[26]
XU X F, THORNTON P E, POST W M. A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems[J]. Glob Ecol Biogeogr, 2013, 22(6): 737-749. DOI:10.1111/geb.12029.
[27]
TRESEDER K K. Nitrogen additions and microbial biomass: a meta-analysis of ecosystem studies[J]. Ecol Lett, 2008, 11(10): 1111-1120. DOI:10.1111/j.1461-0248.2008.01230.x.
[28]
JIA S X, WANG Z Q, LI X P, et al. N fertilization affects on soil respiration, microbial biomass and root respiration in Larix gmelinii and Fraxinus mandshurica plantations in China[J]. Plant Soil, 2010, 333(1/2): 325-336. DOI:10.1007/s11104-010-0348-8.
[29]
TIAN D, JIANG L, MA S, et al. Effects of nitrogen deposition on soil microbial communities in temperate and subtropical forests in China[J]. Sci Total Environ, 2017, 607/608: 1367-1375. DOI:10.1016/j.scitotenv.2017.06.057.
[30]
JIAN S Y, LI J W, CHEN J, et al. Soil extracellular enzyme activities, soil carbon and nitrogen storage under nitrogen fertilization: a meta-analysis[J]. Soil Biol Biochem, 2016, 101: 32-43. DOI:10.1016/j.soilbio.2016.07.003.
[31]
SINSABAUGH R L. Phenol oxidase, peroxidase and organic matter dynamics of soil[J]. Soil BiolBiochem, 2010, 42(3): 391-404. DOI:10.1016/j.soilbio.2009.10.014.
[32]
READ D J, PEREZ-MORENO J. Mycorrhizas and nutrient cycling in ecosystems: a journey towards relevance?[J]. New Phytol, 2003, 157(3): 475-492. DOI:10.1046/j.1469-8137.2003.00704.x.
[33]
XIAO W, CHEN X, JING X, et al. A meta-analysis of soil extracellular enzyme activities in response to global change[J]. Soil Biol Biochem, 2018, 123: 21-32. DOI:10.1016/j.soilbio.2018.05.001.
[34]
CHEN H, LI D J, ZHAO J, et al. Effects of nitrogen addition on activities of soil nitrogen acquisition enzymes:a meta-analysis[J]. Agric Ecosyst and Environ, 2018, 252: 126-131. DOI:10.1016/j.agee.2017.09.032.
[35]
WEAND M P, ARTHUR M A, LOVETT G M, et al. Effects of tree species and N additions on forest floor microbial communities and extracellular enzyme activities[J]. Soil Biol Biochem, 2010, 42(12): 2161-2173. DOI:10.1016/j.soilbio.2010.08.012.
[36]
ALLISON S D, CZIMCZIK C I, TRESEDER K K. Microbial activity and soil respiration under nitrogen addition in Alaskan boreal forest[J]. Glob Change Biol, 2008, 14(5): 1156-1168. DOI:10.1111/j.1365-2486.2008.01549.x.
[37]
曹子铖, 程淑兰, 方华军, 等. 温带针阔叶林土壤有机碳动态和微生物群落结构对有机氮添加的响应特征[J]. 土壤学报, 2020, 57(4):963-974.
CAO Z C, CHENG S L, FANG H J, et al. Responses of soil organic carbon dynamics and microbial community structure to organic nitrogen fertilization in the temperate needle-broadleaved mixed forest[J]. Acta Pedologica Sinica, 2020, 57(4):963-974. DOI:10.11766/trxb201908130350.
[38]
XU C H, XU X, JU C H, et al. Long-term, amplified responses of soil organic carbon to nitrogen addition worldwide[J]. Glob Change Biol, 2021, 27(6): 1170-1180. DOI:10.1111/gcb.15489.
[39]
XIA J, WAN S. Global response patterns of terrestrial plant species to nitrogen addition[J]. New Phytol, 2008, 179(2): 428-439. DOI:10.1111/j.1469-8137.2008.02488.x.
[40]
XIA M, TALHELM A F, PREGITZER K S. Fine roots are the dominant source of recalcitrant plant litter in sugar maple-dominated northern hardwood forests[J]. New Phytol, 2015, 208(3): 715-726. DOI:10.1111/nph.13494.
[41]
XIA M, TALHELM A F, PREGITZER K S. Long-term simulated atmospheric nitrogen deposition alters leaf and fine root decomposition[J]. Ecosystems, 2018, 21(1): 1-14. DOI:10.1007/s10021-017-0130-3.
[42]
FRESCHET G T, CORNWELL W K, WARDLE D A, et al. Linking litter decomposition of above-and below-ground organs to plant-soil feedbacks worldwide[J]. J Ecol, 2013, 101(4): 943-952. DOI:10.1111/1365-2745.12092.
[43]
涂利华, 胡庭兴, 张健, 等. 模拟氮沉降对华西雨屏区苦竹林土壤有机碳和养分的影响[J]. 植物生态学报, 2011, 35(2): 125-136.
TU L H, HU T X, ZHANG J, et al. Response of soil organic carbon and nutrients to simulated nitrogen deposition in Pleioblastus amarus plantation, rainy area of west China[J]. Chin J Plant Ecol, 2011, 35(2): 125-136. DOI:10.3724/SP.J.1258.2011.00125.
[44]
林伟, 马红亮, 裴广廷, 等. 氮添加对亚热带森林土壤有机碳氮组分的影响[J]. 环境科学研究, 2016, 29(1): 67-76.
LIN W, MA H L, PEI G T, et al. Effects of nitrogen addition on soil carbon and nitrogen pools in mid-subtropical forest[J]. Res Environ Sci, 2016, 29(1): 67-76. DOI:10.13198/j.issn.1001-6929.2016.01.09.
[45]
LIANG C, AMELUNG W, LEHMANN J, et al. Quantitative assessment of microbial necromass contribution to soil organic matter[J]. Glob Change Biol, 2019, 25(11): 3578-3590.DOI:10.1111/gcb.14781.
[46]
YUE K, FORNARA D A, YANG W, et al. Effects of three global change drivers on terrestrial C∶N∶P stoichiometry: a global synthesis[J]. Glob Change Biol, 2017, 23(6): 2450-2463. DOI:10.1111/gcb.13569.
[47]
LU M, YANG Y H, LUO Y Q, et al. Responses of ecosystem nitrogen cycle to nitrogen addition: a meta-analysis[J]. New Phytol, 2011, 189(4): 1040-1050. DOI:10.1111/j.1469-8137.2010.03563.x.
[48]
肖华翠, 李靖雯, 夏允, 等. 中亚热带不同母质发育森林土壤磷组分特征及其影响因素[J]. 应用生态学报, 2021, 32(1): 16-22.
XIAO H C, LI J W, XIA Y, et al. Characteristics of phosphorus fractions and their driving factors in forest soils with different parent materials in the mid-subtropics, China[J]. Chin J Appl Ecol, 2021, 32(1): 16-22. DOI:10.13287/j.1001-9332.202101.001.
[49]
VITOUSEK P M, PORDER S, HOULTON B Z, et al. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions[J]. Ecol Appl, 2010, 20(1): 5-15. DOI:10.1890/08-0127.1.
PDF(2119 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/