Draft genomes sequence of Elsinoë murrayae and comparative genomic analysis

CHENG Qiang, ZHAO Lijuan

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (3) : 143-150.

PDF(2366 KB)
PDF(2366 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (3) : 143-150. DOI: 10.12302/j.issn.1000-2006.202108023

Draft genomes sequence of Elsinoë murrayae and comparative genomic analysis

Author information +
History +

Abstract

【Objective】 This study reported the complete genome sequence of Elsinoë murrayae and comparisons with the Elsinoë australis poplar spot anthracnose (PSA) pathotype, aiming to provide a reference for explaining the pathogenic and specialized mechanism of E. murrayae. 【Method】 A draft genome sequence of E. murrayae was sequenced to annotate protein-coding genes and carbohydrate-active enzyme genes. Small secreted protein genes and secondary metabolite biosynthetic gene clusters were screened. According to the orthologous relationship of the genes of Elsinoë spp., the common specific genes of E. murrayae and E. australis (PSA) were identified, and the differential genes between E. murrayae and E. australis (PSA) were screened out and analyzed using GO enrichment. The mating type locus was identified, and the mating type of isolates was detected using PCR with specific primers. 【Result】 A 20.7 Mb genome with 99% completeness was obtained. A total of 8 256 protein-coding genes were predicted, including 486 carbohydrate-active enzyme genes, 193 small secreted protein genes, and 16 secondary metabolite biosynthetic gene clusters (GenBank accession No.: NKHZ00000000). The phylogenetic analysis and whole genome synteny comparisons showed that E. murrayae and E. australis (PSA) had the closest relationship, and the two fungi had 12 common specific genes which were not found in other Elsinoë spp. Compared with the two fungi, 752 and 1 746 different genes were screened, of which encoding proteins were mainly involved in carbohydrate metabolic processes and toxin metabolic processes. The mating type of all the isolates was MAT1-2. 【Conclusion】 The genome of E. murrayae, a fungal pathogen of willow, was reported for the first time. The candidate genes responsible for the host specialization were screened, and the mating system of E. murrayae was analyzed. These studies provided key information for willow disease control and willow-pathogen interaction.

Key words

Elsinoë murrayae / willow leaf scab disease / genome / Elsinoë australis / mating type

Cite this article

Download Citations
CHENG Qiang , ZHAO Lijuan. Draft genomes sequence of Elsinoë murrayae and comparative genomic analysis[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2022, 46(3): 143-150 https://doi.org/10.12302/j.issn.1000-2006.202108023

References

[1]
DICKMANN D I. Silviculture and biology of short-rotation woody crops in temperate regions: then and now[J]. Biomass Bioenergy, 2006, 30(8/9):696-705.DOI: 10.1016/j.biombioe.2005.02.008.
[2]
ZHAO P, KAKISHIMA M, WANG Q, et al. Resolving the Melampsora epitea complex[J]. Mycologia, 2017, 109(3):391-407.DOI: 10.1080/00275514.2017.1326791.
[3]
WANG Y L, LU Q, JIA X Z, et al. First report of branch canker caused by Cytospora atrocirrhata on Populus sp.and Salix sp.in China[J]. Plant Dis, 2013, 97(3):426.DOI: 10.1094/PDIS-09-12-0854-PDN.
[4]
AYLWARD J, STEENKAMP E T, DREYER L L, et al. A plant pathology perspective of fungal genome sequencing[J]. IMA Fungus, 2017, 8(1):1-15.DOI: 10.5598/imafungus.2017.08.01.01.
[5]
BUTIN H, KEHR R. Sphaceloma murrayae Jenk.& Grods.,a pathogen new to Europe on Salix spp.[J]. Forest Pathol, 2004, 34(1):27-31.DOI: 10.1046/j.1439-0329.2003.00344.x.
[6]
SPIERS A G, HOPCROFT D H. Some electron microscope observations of conidium ontogeny of Sphaceloma murrayae on Salix[J]. N Z J Bot, 1992, 30(3):353-358.DOI: 10.1080/0028825X.1992.10412912.
[7]
ZHAO L J, ZHANG W T, XIAO H J, et al. Molecular identification and characterization of Elsinoë murrayae (Synonym:Sphaceloma murrayae) from weeping willow[J]. J Phytopathol, 2018, 166(2):143-149.DOI: 10.1111/jph.12670.
[8]
ZHAO L J, XIAO H J, MA X J, et al. Elsinoë australis causing spot anthracnose on poplar in China[J]. Plant Dis, 2020, 104(8):2202-2209.DOI: 10.1094/pdis-11-19-2349-re.
[9]
LUO R B, LIU B H, XIE Y L, et al. SOAPdenovo2:an empirically improved memory-efficient short-read de novo assembler[J]. GigaScience, 2012, 1(1):18.DOI: 10.1186/2047-217X-1-18.
[10]
WATERHOUSE R M, SEPPEY M, SIMÃO F A, et al. BUSCO applications from quality assessments to gene prediction and phylogenomics[J]. Mol Biol Evol, 2018, 35(3):543-548.DOI: 10.1093/molbev/msx319.
[11]
TER-HOVHANNISYAN V, LOMSADZE A, CHERNOFF Y O, et al. Gene prediction in novel fungal genomes using an ab initio algorithm with unsupervised training[J]. Genome Res, 2008, 18(12):1979-1990.DOI: 10.1101/gr.081612.108.
[12]
LAGESEN K, HALLIN P, RØDLAND E A, et al. RNAmmer:consistent and rapid annotation of ribosomal RNA genes[J]. Nucleic Acids Res, 2007, 35(9):3100-3108.DOI: 10.1093/nar/gkm160.
[13]
LOWE T M, CHAN P P. tRNAscan-SE on-line:integrating search and context for analysis of transfer RNA genes[J]. Nucleic Acids Res, 2016, 44(1):54-57.DOI: 10.1093/nar/gkw413.
[14]
ZHANG H, YOHE T, HUANG L, et al. dbCAN2:a meta server for automated carbohydrate-active enzyme annotation[J]. Nucleic Acids Res, 2018, 46(1):95-101.DOI: 10.1093/nar/gky418.
[15]
ALMAGRO ARMENTEROS J J, TSIRIGOS K D, SØNDERBY C K, et al. Signal P 5.0 improves signal peptide predictions using deep neural networks[J]. Nat Biotechnol, 2019, 37(4):420-423.DOI: 10.1038/s41587-019-0036-z.
[16]
KROGH A, LARSSON B, VON HEIJNE G, et al. Predicting transmembrane protein topology with a hidden Markov model:application to complete genomes[J]. J Mol Biol, 2001, 305(3):567-580.DOI: 10.1006/jmbi.2000.4315.
[17]
BLIN K, SHAW S, STEINKE K, et al. antiSMASH 5.0:updates to the secondary metabolite genome mining pipeline[J]. Nucleic Acids Res, 2019, 47(1):81-87.DOI: 10.1093/nar/gkz310.
[18]
KUMAR S, STECHER G, TAMURA K. MEGA7:molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Mol Biol Evol, 2016, 33(7):1870-1874.DOI: 10.1093/molbev/msw054.
[19]
CASTILLO A I, NELSON A D L, HAUG-BALTZELL A K, et al. A tutorial of diverse genome analysis tools found in the CoGe web-platform using Plasmodium spp.as a model[J]. Database (Oxford), 2018,2018(10.1093):database.DOI: 10.1093/database/bay030.
[20]
LI L, STOECKERT C J, ROOS D S. OrthoMCL: identification of ortholog groups for eukaryotic genomes[J]. Genome Res, 2003, 13(9):2178-2189. DOI: 10.1101/gr.1224503.
[21]
CHEN C J, CHEN H, ZHANG Y, et al. TBtools:an integrative toolkit developed for interactive analyses of big biological data[J]. Mol Plant, 2020, 13(8):1194-1202.DOI: 10.1016/j.molp.2020.06.009.
[22]
STERGIOPOULOS I, DE WIT P J. Fungal effector proteins[J]. Annu Rev Phytopathol, 2009, 47:233-263.DOI: 10.1146/annurev.phyto.112408.132637.
[23]
EBERT M K, SPANNER R E, DE JONGE R, et al. Gene cluster conservation identifies melanin and perylenequinone biosynthesis pathways in multiple plant pathogenic fungi[J]. Environ Microbiol, 2019, 21(3):913-927.DOI: 10.1111/1462-2920.14475.
[24]
LI Z, FAN Y C, CHANG P P, et al. Genome sequence resource for Elsinoë ampelina,the causal organism of grapevine anthracnose[J]. Mol Plant Microbe Interact, 2020, 33(4):576-579.DOI: 10.1094/MPMI-12-19-0337-A.
[25]
JEFFRESS S, ARUN-CHINNAPPA K, STODART B, et al. Genome mining of the Citrus pathogen Elsinoë fawcettii;prediction and prioritisation of candidate effectors,cell wall degrading enzymes and secondary metabolite gene clusters[J]. PLoS One, 2020, 15(5):e0227396.DOI: 10.1371/journal.pone.0227396.
[26]
SHANMUGAM G, JEON J, HYUN J W. Draft genome sequences of Elsinoë fawcettii and Elsinoë australis causing scab diseases on Citrus[J]. Mol Plant Microbe Interactions, 2020, 33(2):135-137.DOI: 10.1094/mpmi-06-19-0169-a.
[27]
FAN X L, BARRETO R W, GROENEWALD J Z, et al. Phylogeny and taxonomy of the scab and spot anthracnose fungus Elsinoë (Myriangiales,Dothideomycetes)[J]. Stud Mycol, 2017, 87:1-41.DOI: 10.1016/j.simyco.2017.02.001.
[28]
NI M, FERETZAKI M, SUN S, et al. Sex in fungi[J]. Annu Rev Genet, 2011, 45:405-430.DOI: 10.1146/annurev-genet-110410-132536.
[29]
WILKEN P M, STEENKAMP E T, WINGFIELD M J, et al. Which MAT gene? Pezizomycotina (Ascomycota) mating-type gene nomenclature reconsidered[J]. Fungal Biol Rev, 2017, 31(4):199-211.DOI: 10.1016/j.fbr.2017.05.003.
[30]
CHUNG K R. Elsinoë fawcettii and Elsinoë australis:the fungal pathogens causing Citrus scab[J]. Mol Plant Pathol, 2011, 12(2):123-135.DOI: 10.1111/j.1364-3703.2010.00663.x.
PDF(2366 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/