Study on increment model of individual-tree diameter of Cunninghamia lanceolata in consideration of climatic factors

GUO Changyou, GUO Hongxian, WANG Baohua

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2023, Vol. 47 ›› Issue (1) : 47-56.

PDF(5651 KB)
PDF(5651 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2023, Vol. 47 ›› Issue (1) : 47-56. DOI: 10.12302/j.issn.1000-2006.202108030

Study on increment model of individual-tree diameter of Cunninghamia lanceolata in consideration of climatic factors

Author information +
History +

Abstract

【Objective】 To accurately predict growth and formulate forest management strategies for Cunninghamia lanceolata in Hunan Province, a mixed-effects individual tree diameter increment model for Cunninghamia lanceolata was developed considering climatic factors. 【Method】 Based on the data of 3 638 observations in 73 plots from the 7th and 8th Chinese National Forest Inventory in Hunan Province, this study used the multiple stepwise regression method to introduce tree size, competition, site conditions, other stand variables, and climate factors as independent variables, and developed and evaluated four different dependent variables: i.e. 5-year diameter increment (D2-D1), the natural logarithm of 5-year diameter increment [ln(D22-D21+1)], the natural logarithm of 5-year squared diameter increment [ln(D22-D21+1)], and 5-year squared diameter increment (D22-D21). An optimal basic model was selected. A linear mixed-effects model with sample plots as random effects was then fitted. In addition, three commonly used variance functions and correlation structures were introduced to remove the heteroscedasticity of the residuals and autocorrelation. Finally, the 10-fold cross-validation method was used to assess predictive ability. 【Result】 Compared with the other three dependent variables, the model performed best with ln(D22-D21+1) as the dependent variable. Therefore, the model in which the dependent variable was ln(D22-D21+1) was selected as the optimal basic model. According to the results of the optimal basic model, the initial diameter, the ratio of the sum of the basal area of trees with diameters larger than the subject tree’s diameter to the initial diameter, stand basal area per hectare, the product of the sine of the slope and the natural logarithm of the altitude, mean annual precipitation, and mean minimum temperature in January significantly affected the increase in the diamteter of Cunninghamia lanceolata. Compared with the optimal basic model, the mixed-effects model showed a significantly improved prediction accuracy. Additionally, the introduction of variance functions and correlation structures also significantly improved the model’s performance, of which the exponent function (exponent) and ARMA(1,1) performed the best. In the 10-fold cross-validation, the mixed-effects model also showed better performance. 【Conclusion】 Climatic factors have a significant effect on the increase of diameter in Cunninghamia lanceolata. Compared with the basic model, the linear mixed-effects model with sample plots as random effects could greatly improve the model’s performance, and we hope that the model could provide support for the scientific management of Cunninghamia lanceolata in Hunan Province.

Key words

Cunninghamia lanceolata / individual-tree diameter increment / climate factor / mixed-effects model / 10-fold cross-validation

Cite this article

Download Citations
GUO Changyou , GUO Hongxian , WANG Baohua. Study on increment model of individual-tree diameter of Cunninghamia lanceolata in consideration of climatic factors[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2023, 47(1): 47-56 https://doi.org/10.12302/j.issn.1000-2006.202108030

References

[1]
符利勇, 唐守正, 张会儒, 等. 基于多水平非线性混合效应蒙古栎林单木断面积模型[J]. 林业科学研究, 2015, 28(1):23-31.
FU L Y, TANG S Z, ZHANG H R, et al. Multilevel nonlinear mixed-effects basal area models for individualtrees of Quercus mongolica[J]. Forest Research, 2015, 28(1):23-31. DOI:10.13275/j.cnki.lykxyj.2015.01.004.
[2]
彭娓, 李凤日, 董利虎. 黑龙江省长白落叶松人工林单木生长模型[J]. 南京林业大学学报(自然科学版), 2018, 42(3):19-27.
PENG W, LI F R, DONG L H. Individual tree diameter growth model for Larix olgensis plantation in Heilongjiang Province,China[J]. J Nanjing For Univ (Nat Sci Ed), 2018, 42(3):19-27.DOI:10.3969/j.issn.1000-2006.201711025.
[3]
GRÉGOIRE T G, SCHABENBERGER O, BARRETT J P. Linear modelling of irregularly spaced,unbalanced,longitudinal data from permanent-plot measurements[J]. Can J For Res, 1995, 25(1):137-156.DOI:10.1139/x95-017.
[4]
KESELMAN H J, ALGINA J, KOWALCHUK R K, et al. A comparison of recent approaches to the analysis of repeated measurements[J]. Br J Math Stat Psychol, 1999, 52(1):63-78.DOI:10.1348/000711099158964.
[5]
王文斗, 李凤日, 那冬晨, 等. 辽东栎单木生长模型的研究[J]. 林业科技, 2005(2):11-13.
WANG W D, LI F R, NA D C, et al. Research on the individual tree growth model of Quercus liaotungensis[J]. For Sci Technol, 2005(2):11-13.
[6]
陈国栋, 杜研, 丁佩燕, 等. 基于混合效应模型的新疆天山云杉单木胸径预测模型构建[J]. 北京林业大学学报, 2020, 42(7):12-22.
CHEN G D, DU Y, DING P Y, et al. Predicting model construction of single tree DBH of Picea schrenkiana in Xinjiang of northwestern China based on mixed effects model[J]. J Beijing For Univ, 2020, 42(7):12-22.DOI:10.12171/j.1000-1522.20190236.
[7]
符利勇, 孙华. 基于混合效应模型的杉木单木冠幅预测模型[J]. 林业科学, 2013, 49(8):65-74.
FU L Y, SUN H. Individual crown diameter prediction for Cunninghamia lanceolata forests based on mixed effects models[J]. Sci Silvae Sin, 2013, 49(8):65-74.
[8]
樊伟, 许崇华, 崔珺, 等. 基于混合效应的大别山地区杉木树高-胸径模型比较[J]. 应用生态学报, 2017, 28(9):2831-2839.
Abstract
基于安徽省大别山区马鬃岭林场杉木人工林30块样地1087组数据,选用7个常用树高-胸径(H-D)模型(线性模型、Chapman-Richards模型、Logistic模型等),采用最小二乘法拟合并选出最优基础模型(式11,只含D变量的Chapman-Richards模型),然后基于该模型构建含林分变量优势木平均高度、密度的H-D模型(式12),同时考虑样地水平的随机效应,分别基于式11、12构建混合模型(式13、14),并用幂函数、指数函数消除误差异方差,利用决定系数(R<sup>2</sup>)、均方根误差(RMSE)、平均绝对误差(MAE)和平均相对误差绝对值(MAPE)等指标来评价模型的拟合与预测能力,最终获取最优树高预测模型.结果表明:含林分变量的模型的拟合精度(式12,R<sup>2</sup>=0.863、RMSE=1.381、MAE=0.971)优于基础模型(式11,R<sup>2</sup>=0.827、RMSE=1.554、MAE=0.101).对于误差方差,幂函数、指数函数均能较好地消除异方差,但幂函数相对最好.混合模型的拟合与预测能力均优于式11、12,但混合模型(式13、14)之间的拟合与预测精度相差不大.基于混合效应的H-D模型(式13)能够较好地描述不同林分间H-D关系的差异,实际运用中可选用该模型来预测杉木树高,具有较高的预测精度.
FAN W, XU C H, CUI J, et al. Comparisons of height-diameter models of Chinese fir based on mixed effect in Dabie Mountain area,China[J]. Chin J Appl Ecol, 2017, 28(9):2831-2839.DOI:10.13287/j.1001-9332.201709.036.
A total of 1087 sets of data from 30 plots of Chinese fir (<em>Cunninghamia lanceolata</em>) plantations were collected from Mazongling forestry farm in Dabie Mountains of Anhui Province. Seven commonly used height-diameter (H-D) models (<em>i.e.</em> linear, Chapman-Richards, Logistic models, <em>etc.</em>) were selected and fitted by the least square method to obtain the optimal basic model (equation 11, a Chapman-Richards model with variable <em>D</em> only). Based on this optimal basic mo-del, we built up the H-D model (equation 12) with two stand variables [mean height of dominant trees (DH) and density). Meanwhile, with the consideration of plot random effect, the mixed mo-del, called equation 13 and 14, which based on equation 11 and 12 were constructed, using the power and exponent functions to eliminate heteroscedasticity. Then coefficient of determination (<em>R</em><sup>2</sup>), root-mean-square error (RMSE), mean absolute error (MAE) and mean absolute percen-tage error (MAPE) were used to evaluate their abilities of model fitting and prediction for determining the best model. The results showed that the fit accuracy of the model with stand variables(equation 12) (<em>R</em><sup>2</sup>=0.863, RMSE=1.381, MAPE=0.971) was better than the basic model (equation 11) (<em>R</em><sup>2</sup>=0.827, RMSE=1.554, MAPE=0.101). For error variance, the power function and the exponent function could eliminate the heteroscedasticity, but the former was better than the latter. The mixed models (equation 13, 14) had better fitting and prediction precision than equation 11, 12. There was no significant difference between the two mixed models (equation 13, 14) in fitting and prediction precision. In application, due to a better description of H-D relationship between different stands, the mixed-effect model (equation 13) could be used to predict tree height for Chinese fir plantations with higher precision.
[9]
覃阳平, 张怀清, 陈永富, 等. 改进的简单竞争指标在单木生长模型中的应用[J]. 东北林业大学学报, 2014, 42(12):130-133,144.
QIN Y P, ZHANG H Q, CHEN Y F, et al. Improved hegyi simple competition index in individual tree model[J]. J Northeast For Univ, 2014, 42(12):130-133,144.DOI:10.13759/j.cnki.dlxb.20141210.003.
[10]
CROOKSTON N L, REHFELDT G E, DIXON G E, et al. Addressing climate change in the forest vegetation simulator to assess impacts on landscape forest dynamics[J]. For Ecol Manag, 2010, 260(7):1198-1211.DOI:10.1016/j.foreco.2010.07.013.
[11]
LO Y H, BLANCO J A, SEELY B, et al. Relationships between climate and tree radial growth in interior British Columbia,Canada[J]. For Ecol Manag, 2010, 259(5):932-942.DOI:10.1016/j.foreco.2009.11.033.
[12]
黄开勇, 刘达峰. 杉木:广西优良用材树种[J]. 广西林业, 2011(9):43-44.
HUANG K Y, LIU D F. Cunninghamia lanceolata:an excellent timber tree species in Guangxi[J]. For Guangxi, 2011(9):43-44.DOI:10.3969/j.issn.1004-0390.2011.09.054.
[13]
国家林业局. 第八次全国森林资源清查结果[J]. 林业资源管理, 2014(1):1-2.
State Forestry Administration. Results of the eighth national forest resources inventory[J]. For Resour Manag, 2014(1):1-2.DOI:10.13466/j.cnki.lyzygl.2014.01.001.
[14]
王兵, 马向前, 郭浩, 等. 中国杉木林的生态系统服务价值评估[J]. 林业科学, 2009, 45(4):124-130.
WANG B, MA X Q, GUO H, et al. Evaluation of the Chinese fir forest ecosystem services value[J]. Sci Silvae Sin, 2009, 45(4):124-130.DOI:10.3321/j.issn:1001-7488.2009.04.021.
[15]
臧颢. 区域尺度气候敏感的落叶松人工林林分生长模型[D]. 北京: 中国林业科学研究院, 2016.
ZANG H. Regional-scale climate-sensitive stand growth models for larch plantations[D]. Beijing: Chinese Academy of Forestry, 2016.
[16]
李春明. 基于两层次线性混合效应模型的杉木林单木胸径生长量模型[J]. 林业科学, 2012, 48(3):66-73.
LI C M. Individual tree diameter increment model for Chinese fir plantation based on two-level linear mixed effects models[J]. Sci Silvae Sin, 2012, 48(3):66-73.DOI:10.11707/j.1001-7488.20120311.
[17]
卢军. 长白山地区天然混交林单木生长模型的研究[D]. 哈尔滨: 东北林业大学, 2005.
LU J. Individual tree growth models of natural mixed forest in Changbai Mountains[D]. Harbin: Northeast Forestry University, 2005.
[18]
刘平, 马履一, 王玉涛, 等. 油松中幼人工林单木胸径生长模型研究[J]. 沈阳农业大学学报, 2009, 40(2):197-201.
LIU P, MA L Y, WANG Y T, et al. Individual DBH growth model of Pinus tabulaeformis young-middle aged plantation[J]. J Shenyang Agric Univ, 2009, 40(2):197-201.DOI:10.3969/j.issn.1000-1700.2009.02.016.
[19]
王建军, 曾伟生, 孟京辉. 考虑预估期间林木枯死及采伐影响的杉木单木胸高断面积生长模型研究[J]. 西北林学院学报, 2017, 32(3):181-185.
WANG J J, ZENG W S, MENG J H. Individual-tree basal area growth model for Cunninghamia lanceolata with the consideration of thinning and tree mortality in the prediction interval[J]. J Northwest For Univ, 2017, 32(3):181-185.DOI:10.3969/j.issn.1001-7461.2017.03.34.
[20]
MOORE J A, BUDELSKY C A, SCHLESINGER R C. A new index representing individual tree competitive status[J]. Can J For Res, 1973, 3(4):495-500.DOI:10.1139/x73-073.
[21]
STAGE A R. An expression for the effect of aspect,slope,and habitat type on tree growth[J]. For Sci, 1976, 22(4):457-460.DOI:10.1093/forestscience/22.4.457.
[22]
LI Y, WANG W, ZENG W S, et al. Development of crown ratio and height to crown base models for Masson pine in Southern China[J]. Forests, 2020, 11(11):1216.DOI:10.3390/f11111216.
[23]
WANG W W, CHEN X Y, ZENG W S, et al. Development of a mixed-effects individual-tree basal area increment model for oaks (Quercus spp.) considering forest structural diversity[J]. Forests, 2019, 10(6):474.DOI:10.3390/f10060474.
[24]
WEINER J. Asymmetric competition in plant populations[J]. Trends Ecol Evol, 1990, 5(11):360-364.DOI:10.1016/0169-5347(90)90095-U.
Recently there has been much interest in the hypothesis that competition between individual plants is asymmetric or onesided: larger individuals obtain a disproportionate share of the resources (for their relative size) and suppress the growth of smaller individuals. This has important implications for population structure, for the analysis of competition between plants at the individual, population and community levels, and for our understanding of competition as a selective force in the evolution of plant populations.Copyright © 1990. Published by Elsevier Ltd.
[25]
马武, 雷相东, 徐光, 等. 蒙古栎天然林单木生长模型研究:Ⅰ.直径生长量模型[J]. 西北农林科技大学学报(自然科学版), 2015, 43(2):99-105.
MA W, LEI X D, XU G, et al. Growth models for natural Quercus mongolicaforests:Ⅰ.diameter growth model[J]. J Northwest A & F Univ (Nat Sci Ed), 2015, 43(2):99-105.DOI:10.13207/j.cnki.jnwafu.2015.02.011.
[26]
雷相东, 李永慈, 向玮. 基于混合模型的单木断面积生长模型[J]. 林业科学, 2009, 45(1):74-80.
LEI X D, LI Y C, XIANG W. Individual basal area growth model using multi-level linear mixed model with repeated measures[J]. Sci Silvae Sin, 2009, 45(1):74-80.DOI:10.3321/j.issn:1001-7488.2009.01.014.
[27]
MÄKINEN H, NÖJD P, KAHLE H P, et al. Large-scale climatic variability and radial increment variation of Picea abies (L.) Karst[J]. Trees, 2003, 17(2):173-184.DOI:10.1007/s00468-002-0220-4.
[28]
张海平, 李凤日, 董利虎, 等. 基于气象因子的白桦天然林单木直径生长模型[J]. 应用生态学报, 2017, 28(6):1851-1859.
Abstract
基于大、小兴安岭地区212块白桦天然林固定样地复测数据和区域内及周边共30个气象站点数据,构建了基于气象因子的单木生长模型.在此基础上,通过分析大、小兴安岭地区林分因子及气象因子的差异,采用哑变量方法构建了含区域效应的单木直径生长模型.结果表明: 生长季最低温度(T<sub>g min</sub>)和生长季降雨量(P<sub>g m</sub>)是影响两地区白桦胸径生长量的主要气象因素.T<sub>g min</sub>和P<sub>g m</sub>与胸径生长量均呈正相关关系,但T<sub>g min</sub>对胸径生长量的影响程度存在明显的区域差异.引入T<sub>g min</sub>和P<sub>g m</sub>的单木生长模型比仅含林分因子的单木生长模型的调整后确定系数(R<sub>a</sub><sup>2</sup>)提高了11%(R<sub>a</sub><sup>2</sup>=0.56),说明气象因子可以很好地解释该地区白桦生长情况;采用哑变量法构建的含区域效应的胸径生长模型将R<sub>a</sub><sup>2</sup>提高了18%(R<sub>a</sub><sup>2</sup>=0.59),且有效解决了模型参数区域不相容的问题.模型检验结果表明,含区域效应的哑变量单木胸径生长模型对大、小兴安岭地区白桦胸径生长量的预估效果最好,平均偏差、平均绝对偏差、平均相对偏差和平均相对偏差绝对值分别为0.0086、0.4476、5.8%和20.0%.基于气象因子的哑变量单木胸径生长模型可以很好地描述大、小兴安岭地区白桦的胸径生长过程.
ZHANG H P, LI F R, DONG L H, et al. Individual tree diameter increment model for natural Betula platyphylla forests based on meteorological factors[J]. Chin J Appl Ecol, 2017, 28(6):1851-1859.DOI:10.13287/j.1001-9332.201706.009.
[29]
LIANG E Y, SHAO X M, HU Y X, et al. Dendroclimatic evaluation of climate-growth relationships of Meyer spruce (Picea meyeri) on a sandy substrate in semi-arid grassland,north China[J]. Trees, 2001, 15(4):230-235.DOI:10.1007/s004680100097.
[30]
ARCHAMBAULT S, BERGERON Y. An 802-year tree-ring chronology from the Quebec boreal forest[J]. Can J For Res, 1992, 22(5):674-682.DOI:10.1139/x92-090.
[31]
王向荣, 孙海龙, 余鑫, 等. 坡向和坡位对水曲柳中龄林生长的影响[J]. 山西农业大学学报(自然科学版), 2011, 31(1):30-34.
WANG X R, SUN H L, YU X, et al. Influence of aspect and position of slope on the growth of mid-age Fraxinus mandshurica Rupr.plantation[J]. J Shanxi Agric Univ (Nat Sci Ed), 2011, 31(1):30-34.DOI:10.13842/j.cnki.issn1671-8151.2011.01.024.
[32]
WANG W W, BAI Y F, JIANG C Q, et al. Development of a linear mixed-effects individual-tree basal area increment model for Masson pine in Hunan Province,south-central China[J]. J Sustain For, 2020, 39(5):526-541.DOI:10.1080/10549811.2019.1688172.
PDF(5651 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/