Effects of 1-MCP pretreatment on photosynthetic characteristics and related gene expression of rhododendron seedlings under heat stress

WANG Lulu, GENG Xingmin, HUAN Zhiqun, XU Shida, ZHAO Hui

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2023, Vol. 47 ›› Issue (4) : 103-113.

PDF(2571 KB)
PDF(2571 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2023, Vol. 47 ›› Issue (4) : 103-113. DOI: 10.12302/j.issn.1000-2006.202108034

Effects of 1-MCP pretreatment on photosynthetic characteristics and related gene expression of rhododendron seedlings under heat stress

Author information +
History +

Abstract

【Objective】 Our goals are to reveal regulatory mechanisms of ethylene on the heat tolerance of rhododendron seedlings, and to examine the effects of ethylene receptor inhibitor 1-MCP pretreatment on the heat tolerance and the photosynthetic system of rhododendron seedlings under high temperature stress.【Method】Two Rhododendron cultivars with different heat resistance were used to analyze the effects of 1-MCP pretreatment on the heat damage index, photosynthetic pigment content, photosynthetic gas exchange parameters and chlorophyll fluorescence parameters of rhododendron leaves under high temperature stress. Furthermore, the transcriptome data of ‘Hong Yue’ were used to analyze the transcriptional regulation of 1-MCP pretreatment and high temperature stress on the related photosynthetic pathway genes.【Results】High temperature stress reduced net photosynthetic rate (Pn), photosynthetic pigment content, fluorescence maximum (Fm), potential photochemical activity (Fv/Fo) and maximal photochemical efficiency (Fv/Fm), whereas it increased fluorescence origin (Fo) in the two Rhododendron cultivars. However, the change ranges of these indexes were smaller in ‘Yanzhi Mi’ than in ‘Hong Yue’. The pretreatment with appropriate concentrations of 1-MCP slowed down the decline of chlorophyll content under high temperature stress, maintained the stability of relevant indexes of photosynthetic system of rhododendron leaves, alleviated the damage of photosynthetic apparatus induced by heat stress, and reduced the degree of photoinhibition. Changes of the parameters of the PSⅡ reaction center activity showed that the absorption flux per reaction center (ABS/RC) increased significantly in the leaves of the two Rhododendron cultivars, while the rate of electron transport flux of the photosystem Ⅱ reaction center (ETo/RC) decreased under high temperature stress. The quantum yield of light energy absorption, capture and electron transfer per unit area decreased significantly, suggesting that the electron transfer of the PSⅡ was blocked. The pretreatment with appropriate concentrations of 1-MCP slowed down the decline of electron transport (ETo/CSm), absorption (ABS/CSm), trapping (TRo/CSm) in the PSⅡ cross-section of the two Rhododendron cultivars. The pretreatment also alleviated the overreduction of electron transfer chain by increasing electron transfer per unit reaction center and the obstruction of electron transfer in the PSⅡ reaction center under high temperature stress. The transcriptional data analysis of ‘Hong Yue’ showed that the expression of all 30 DEGs related to the photosynthetic pathway, except the psbA, were down-regulated under high temperature stress, while 1-MCP pretreatment alleviated the decline of transcription levels of genes related to the photosynthetic pathway to a certain extent, but the variation trend was not significant.【Conclusion】 High temperature stress inhibits the photosynthetic efficiency of rhododendron leaves, and Rhododendron cultivars with high heat-resistant may maintain the stability of photosynthetic system under high temperature stress. The pretreatment with appropriate concentrations of 1-MCP can effectively improve the photosynthetic capacity of rhododendron leaves and alleviate the symptoms of heat stress.

Key words

rhododendron / heat stress / 1-MCP / photosynthesis

Cite this article

Download Citations
WANG Lulu , GENG Xingmin , HUAN Zhiqun , et al . Effects of 1-MCP pretreatment on photosynthetic characteristics and related gene expression of rhododendron seedlings under heat stress[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2023, 47(4): 103-113 https://doi.org/10.12302/j.issn.1000-2006.202108034

References

[1]
耿玉英. 中国杜鹃花属植物[M]. 上海: 上海科学技术出版社, 2014.
GENG Y Y. The genus rhododendron of China[M]. Shanghai: Shanghai Scientific & Technical Publishers, 2014.
[2]
GU K, GENG X M, YUE Y, et al. Contribution of keeping more stable anatomical structure under high temperature to heat resistance of Rhododendron seedlings[J]. J Fac Agric Kyushu Univ, 2016, 61(2):273-279.DOI: 10.5109/1685882.
[3]
周媛, 童俊, 徐冬云, 等. 高温胁迫下不同杜鹃品种PSⅡ活性变化及其耐热性比较[J]. 中国农学通报, 2015, 31(31):150-159.
ZHOU Y, TONG J, XU D Y, et al. PSⅡ activity changes and heat-tolerance comparison of different Rhododendron cultivars under high temperature stress[J]. Chin Agric Sci Bull, 2015, 31(31):150-159.
[4]
RANNEY T G, BLAZICH F A, WARREN S L. Heat tolerance of selected species and populations of rhododendron[J]. J Am Soc Hortic Sci, 1995, 120(3):423-428.
[5]
GENG X, YANG Q Y, YUE Y, et al. Effects of high temperature on photosynthesis,membrane lipid peroxidation and osmotic adjustment in four Rhododendron species[J]. J Fac Agric Kyushu Univ, 2019, 64(1):33-38.
[6]
YAN Z N, MA T, GUO S X, et al. Leaf anatomy,photosynthesis and chlorophyll fluorescence of lettuce as influenced by arbuscular mycorrhizal fungi under high temperature stress[J]. Sci Hortic, 2021, 280:109933.DOI: 10.1016/j.scienta.2021.109933.
[7]
李小玲, 华智锐, 张丹婷. 5-氨基乙酰丙酸(ALA)对秦岭高山杜鹃耐热性的诱导效应[J]. 江苏农业科学, 2017, 45(20):176-179.
LI X L, HUA Z R, ZHANG D T. Induction effect of 5-aminolevulinic acid (ALA) on heat tolerance of Rhododendron in Qinling Mountains[J]. Jiangsu Agric Sci, 2017, 45(20):176-179.DOI: 10.15889/j.issn.1002-1302.2017.20.043.
[8]
DINER B A, BAUTISTA J A, NIXON P J, et al. Coordination of proton and electron transfer from the redox-active tyrosine,YZ of Photosystem Ⅱ and examination of the electrostatic influence of oxidized tyrosine,YD·(H+)[J]. Phys Chem Chem Phys, 2004, 6(20):4844-4850.DOI: 10.1039/B407423H.
[9]
WANG J, CHEN Z W, CHEN H, et al. Effect of hydrogen peroxide on Microcystic aeruginosa:role of cytochromes P450[J]. Sci Total Environ, 2018, 626:211-218.DOI: 10.1016/j.scitotenv.2018.01.067.
[10]
李治鑫, 李鑫, 范利超, 等. 高温胁迫对茶树叶片光合系统的影响[J]. 茶叶科学, 2015, 35(5):415-422.
LI Z X, LI X, FAN L C, et al. Effect of heat stress on the photosynthesis system of tea leaves[J]. J Tea Sci, 2015, 35(5):415-422.DOI: 10.13305/j.cnki.jts.2015.05.002.
[11]
LI Y T, XU W W, REN B Z, et al. High temperature reduces photosynthesis in maize leaves by damaging chloroplast ultrastructure and photosystem Ⅱ[J]. J Agron Crop Sci, 2020, 206(5):548-564.DOI: 10.1111/jac.12401.
[12]
SRIVASTAVA A, GUISSÉ B, GREPPIN H, et al. Regulation of antenna structure and electron transport in Photosystem Ⅱ of Pisum sativum under elevated temperature probed by the fast polyphasic chlorophyll a fluorescence transient:OKJIP[J]. Biochim Biophys Acta (BBA) Bioenerg, 1997, 1320(1):95-106.DOI: 10.1016/S0005-2728(97)00017-0.
[13]
AGRAWAL D, JAJOO A. Investigating primary sites of damage in photosystem Ⅱ in response to high temperature[J]. Ind J Plant Physiol, 2015, 20(4):304-309.DOI: 10.1007/s40502-015-0176-1.
[14]
李鹏民, 高辉远, STRASSER R. 快速叶绿素荧光诱导动力学分析在光合作用研究中的应用[J]. 植物生理与分子生物学学报, 2005, 31(6):559-566.
LI P M, GAO H Y, STRASSER R. Application of the fast chlorophyll fluorescence induction dynamics analysis in photosynthesis study[J]. Acta Photophysiol Sin, 2005, 31(6):559-566.
[15]
张乐华, 孙宝腾, 周广, 等. 高温胁迫下五种杜鹃花属植物的生理变化及其耐热性比较[J]. 广西植物, 2011, 31(5):651-658.
ZHANG L H, SUN B T, ZHOU G, et al. Physiological changes and heat tolerance comparison of five Rhododendron species under high-temperature stress[J]. Guihaia, 2011, 31(5):651-658.DOI: 10.3969/j.issn.1000-3142.2011.05.016.
[16]
耿兴敏, 刘攀, 李泽丰, 等. 过氧化氢预处理提高杜鹃的耐热性研究[J]. 安徽农业大学学报, 2019, 46(1):167-172.
GENG X M, LIU P, LI Z F, et al. Improving heat tolerance of Rhododendron by H2O2 pretreatment[J]. J Anhui Agric Univ, 2019, 46(1):167-172.DOI: 10.13610/j.cnki.1672-352x.20190314.007.
[17]
耿兴敏, 肖丽燕, 赵晖, 等. H2O2预处理及高温胁迫下杜鹃叶片活性氧及抗氧化酶亚细胞定位分析[J]. 西北植物学报, 2019, 39(5):791-800.
GENG X M, XIAO L Y, ZHAO H, et al. Sub-cellular localization of ROS-scavenging system in Rhododendron leaves under heat stress and H2O2 pretreatment[J]. Acta Bot Boreali Occidentalia Sin, 2019, 39(5):791-800.DOI: 10.7606/j.issn.1000-4025.2019.05.0791.
[18]
HAYS D B, DO J H, MASON R E, et al. Heat stress induced ethylene production in developing wheat grains induces kernel abortion and increased maturation in a susceptible cultivar[J]. Plant Sci, 2007, 172(6):1113-1123.DOI: 10.1016/j.plantsci.2007.03.004.
[19]
ZHAO M G, LIU W J, XIA X Z, et al. Cold acclimation-induced freezing tolerance of Medicago truncatula seedlings is negatively regulated by ethylene[J]. Physiol Plant, 2014, 152(1):115-129.DOI: 10.1111/ppl.12161.
[20]
OZGA J A, KAUR H, SAVADA R P, et al. Hormonal regulation of reproductive growth under normal and heat-stress conditions in legume and other model crop species[J]. J Exp Bot, 2017, 68(8):1885-1894.DOI: 10.1093/jxb/erw464.
[21]
赵赫, 陈受宜, 张劲松. 乙烯信号转导与植物非生物胁迫反应调控研究进展[J]. 生物技术通报, 2016, 32(10):1-10.
ZHAO H, CHEN S Y, ZHANG J S. Ethylene signaling pathway in regulating plant response to abiotic stress[J]. Biotechnol Bull, 2016, 32(10):1-10.DOI: 10.13560/j.cnki.biotech.bull.1985.2016.10.001.
[22]
张宏, 陈锐, 黄林周, 等. 陕229干旱复水诱导基因表达及小麦乙烯受体(TaERS)基因特征分析[J]. 农业生物技术学报, 2012, 20(5):497-505.
ZHANG H, CHEN R, HUANG L Z, et al. Genes expression in response to re-watering after drought stress in shaan 229 and characterization of ethylene receptor genes(TaERS) in wheat[J]. J Agric Biotechnol, 2012, 20(5):497-505.DOI: 10.3969/j.issn.1674-7968.2012.05.005.
[23]
赵晖, 耿兴敏, 王露露, 等. 乙烯在杜鹃花耐热机制中的作用研究[J]. 园艺学报, 2022, 49(3):561-570.
ZHAO H, GENG X M, WANG L L, et al. Research on the effect of ethylene in heat resistance mechanism of Rhododendron[J]. Acta Horticulturae Sinica, 2022, 49(3):561-570. DOI:10.16420/j.issn.0513-353x.2021-0013.
[24]
杨虎清, 杜荣茂, 向庆宁, 等. 1-MCP对植物乙烯反应的抑制和应用[J]. 植物生理学通讯, 2002, 38(6):611-614.
YANG H Q, DU R M, XIANG Q N, et al. Mechanism of 1-MCP in inhibiting ethylene response in plants and its application[J]. Plant Physiol Commun, 2002, 38(6):611-614.DOI: 10.13592/j.cnki.ppj.2002.06.036.
[25]
张正科. 1-MCP与内源乙烯相互作用对番茄和鳄梨成熟生理的影响研究[D]. 杨凌: 西北农林科技大学, 2011.
ZHANG Z K. Effect of interaction between 1-MCP and internal ethylene on ripening physiology of tomato and avocado fruit[D]. Yangling: Northwest A & F University, 2011.
[26]
方位宽, 何姗珊, 王冠玉, 等. 干旱胁迫下喷施甲基环丙烯对苗期甘蔗SoMAPK4基因表达的影响[J]. 西南农业学报, 2017, 30(1):40-44.
FANG W K, HE S S, WANG G Y, et al. Effect of 1-MCP on so SoMAPK4 gene expression under drought stress in sugarcane seedling stage[J]. Southwest China J Agric Sci, 2017, 30(1):40-44.DOI: 10.16213/j.cnki.scjas.2017.1.008.
[27]
HUSSAIN S, ZHU C Q, HUANG J, et al. Ethylene response of salt stressed rice seedlings following Ethephon and 1-methylcyclopropene seed priming[J]. Plant Growth Regul, 2020, 92(2):219-231.DOI: 10.1007/s10725-020-00632-1.
[28]
邓娇燕, 黄斌, 吕立军, 等. 叶面喷施1-MCP缓解辣椒幼苗高温伤害的机理研究[J]. 园艺学报, 2019, 46(5):891-900.
DENG J Y, HUANG B, L J, et al. Mechanisms of foliar-spraying 1-MCP to alleviate injury of pepper seedlings caused by high temperature[J]. Acta Hortic Sin, 2019, 46(5):891-900.DOI: 10.16420/j.issn.0513-353x.2018-0858.
[29]
李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000.
LI H S. Principles and techniques of plant physio-logical biochemical experiment[M]. Beijing: Higher Education Press, 2000.
[30]
FANG L C, TONG J, DONG Y F, et al. De novo RNA sequencing transcriptome of Rhododendron obtusum identified the early heat response genes involved in the transcriptional regulation of photosynthesis[J]. PLoS One, 2017, 12(10):e0186376.DOI: 10.1371/journal.pone.0186376.
[31]
刘剑锋, 程云清, 陈智文. 乙烯促进与抑制剂对旱后复水玉米生长、保护酶活性及膜脂过氧化的影响[J]. 中国农学通报, 2008, 24(8):225-229.
LIU J F, CHENG Y Q, CHEN Z W. Effects of ethylene inhibitor and promoter on growth,protective enzyme activities and lipid peroxidation of maize under water stress and rewatering conditions[J]. Chin Agric Sci Bull, 2008, 24(8):225-229.
[32]
JEGADEESAN S, BEERY A, ALTAHAN L, et al. Ethylene production and signaling in tomato (Solanum lycopersicum) pollen grains is responsive to heat stress conditions[J]. Plant Reprod, 2018, 31(4):367-383.DOI: 10.1007/s00497-018-0339-0.
[33]
KAWAKAMI E M, OOSTERHUIS D M, SNIDER J L. Physiological effects of 1-methylcyclopropene on well-watered and water-stressed cotton plants[J]. J Plant Growth Regul, 2010, 29(3):280-288.DOI: 10.1007/s00344-009-9134-3.
[34]
解静, 罗自生. 1-甲基环丙烯对番茄冷害的影响[J]. 园艺学报, 2011, 38(2):281-287.
XIE J, LUO Z S. Effect of 1-methylcyclopropene on chilling injury of tomato fruit[J]. Acta Hortic Sin, 2011, 38(2):281-287.DOI: 10.16420/j.issn.0513-353x.2011.02.012.
[35]
WANG L, CAO H L, CHEN C S, et al. Complementary transcriptomic and proteomic analyses of a chlorophyll-deficient tea plant cultivar reveal multiple metabolic pathway changes[J]. J Proteom, 2016, 130:160-169.DOI: 10.1016/j.jprot.2015.08.019.
[36]
POLÍVKA T, FRANK H A. Molecular factors controlling photosynthetic light harvesting by carotenoids[J]. Acc Chem Res, 2010, 43(8):1125-1134.DOI: 10.1021/ar100030m.
[37]
黄小晶, 许泽华, 牛锐敏, 等. 叶片黄化对‘赤霞珠’葡萄光合及叶绿素荧光特性的影响[J]. 经济林研究, 2020, 38(3):190-199.
HUANG X J, XU Z H, NIU R M, et al. Effect of etiolation on photosynthesis and chlorophyll fluorescence of ‘Cabernet Sauvignon’ grapes[J]. Non Wood For Res, 2020, 38(3):190-199.DOI: 10.14067/j.cnki.1003-8981.2020.03.022.
[38]
何铁光, 董文斌, 王爱勤, 等. 高温胁迫下辣椒生理生化响应机理初步探讨[J]. 西南农业学报, 2013, 26(2):541-544.
HE T G, DONG W B, WANG A Q, et al. Studies on physiological and biochemical response mechanism to high temperature stress in pepper seedlings with different heat tolerance[J]. Southwest China J Agric Sci, 2013, 26(2):541-544.DOI: 10.16213/j.cnki.scjas.2013.02.076.
[39]
常仁杰. 高温胁迫下两种叶色四季秋海棠的生理生化响应研究[D]. 杭州: 浙江农林大学, 2013.
CHANG R J. Study on physiological and biochemical responses of two kinds of Begonia semperflorens in leaf color under high temperature stress[D]. Hangzhou: Zhejiang A & F University, 2013.
[40]
张守仁. 叶绿素荧光动力学参数的意义及讨论[J]. 植物学通报, 1999, 34(4):444-448.
ZHANG S R. A discussion on chlorophyll fluorescence kinetics parameters and their significance[J]. Chin Bull Bot, 1999, 34(4):444-448.DOI: 10.3969/j.issn.1674-3466.1999.04.021.
[41]
KRÜGER G H J, TSIMILLI-MICHAEL M, STRASSER R J. Light stress provokes plastic and elastic modifications in structure and function of photosystem Ⅱ in camellia leaves[J]. Physiol Plant, 1997, 101(2):265-277.DOI: 10.1111/j.1399-3054.1997.tb00996.x.
[42]
BERRY J, BJORKMAN O. Photosynthetic response and adaptation to temperature in higher plants[J]. Annu Rev Plant Physiol, 1980, 31:491-543.
[43]
孙永江, 杜远鹏, 翟衡. 高温胁迫下不同光强对‘赤霞珠’葡萄PSⅡ活性及恢复的影响[J]. 植物生理学报, 2014, 50(8):1209-1215.
SUN Y J, DU Y P, ZHAI H. Effects of different light intensity on PSⅡ activity and recovery of Vitis vinifera cv.Cabernet Sauvignon leaves under high temperature stress[J]. Plant Physiol J, 2014, 50(8):1209-1215.DOI: 10.13592/j.cnki.ppj.2014.0133.
[44]
刘超, 袁野, 盖树鹏, 等. 强光高温交叉胁迫对牡丹叶片PSⅡ和PSⅠ之间能量传递的影响[J]. 园艺学报, 2014, 41(2):311-318.
LIU C, YUAN Y, GAI S P, et al. Effects of strong light coupled with high temperature treatment on energy transfer between PSⅡ and PSⅠ in tree peony leaves[J]. Acta Hortic Sin, 2014, 41(2):311-318.DOI: 10.16420/j.issn.0513-353x.2014.02.006.
[45]
姚正菊, 叶济宇, 米华玲. 高温胁迫对烟草叶绿体NADPH脱氢酶复合体活性的促进[J]. 植物生理与分子生物学学报, 2003, 29(5):395-400.
YAO Z J, YE J Y, MI H L. Stimulation of activity of chloroplast NADPH dehydrogenase complex by elevated temperature in tobacco[J]. J Plant Physiol Mol Biol, 2003, 29(5):395-400.DOI: 10.3321/j.issn:1671-3877.2003.05.006.
[46]
薛瑞丽. 高温胁迫对小麦叶绿体D1蛋白周转的影响及黄体酮的调节作用[D]. 郑州: 河南农业大学, 2017.
XUE R L. The turnover of D1 protein and the regulation effects of exogenous progesterone in wheat(Triticum aestivum L.) leaves under high temperature stress[D]. Zhengzhou: Henan Agricultural University, 2017.
[47]
尹赜鹏, 鹿嘉智, 高振华, 等. 番茄幼苗叶片光合作用、PSⅡ电子传递及活性氧对短期高温胁迫的响应[J]. 北方园艺, 2019(5):1-11.
YIN Z P, LU J Z, GAO Z H, et al. Effects of photosynthetic,PSⅡ electron transport and reactive oxygen species on short-term high temperature stress in tomato seedlings[J]. North Hortic, 2019(5):1-11.DOI: 10.11937/bfyy.20183026.
PDF(2571 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/