Estimating the tree height and yield of Camellia oleifera by combining crown volume

WU Jiong, JIANG Fugen, PENG Shaofeng, MA Kaisen, CHEN Song, SUN Hua

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (2) : 53-62.

PDF(29945 KB)
PDF(29945 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (2) : 53-62. DOI: 10.12302/j.issn.1000-2006.202108051

Estimating the tree height and yield of Camellia oleifera by combining crown volume

Author information +
History +

Abstract

【Objective】In this study, the Camellia oleifera base in Mingyue Village, Changsha County, was used as the study area to explore the feasibility of unmanned aerial vehicle (UAV) oblique photography technology for extracting C. oleifera crown volume and estimating the tree height and yield. 【Method】Remote sensing variables such as band reflectance, vegetation indices, texture factors, height characteristics, and crown parameters were extracted from UAV orthophotos and dense matched point clouds. The Kriging, inverse distance weighting, natural neighbor, and filtered triangulation methods were used to obtain the crown volume of C. oleifera. The multiple linear regression, random forest, and K-nearest-neighbor models were established to estimate the height and yield of C. oleifera, and the accuracy of the estimation results was evaluated using the crown volume obtained from the ground 3D laser point clouds and the actual measured height and yield of the sample plots as the measured values. 【Result】The filtered triangulation method was the most effective for obtaining the crown volume with an average relative error of 31.54%, which was better than 36.73% for the inverse distance weighting method, 37.04% for the Kriging method, and 38.54% for the natural neighbor method. The accuracy of all three estimation models for the tree height and yield was improved by using the crown volume as a characteristic variable in the modeling. The relative root mean squared errors (rRMSEs) for tree height were reduced by 3.77%, 0.78% and 0.64%, respectively. In addition, the rRMSEs for the yield were reduced by 1.32%, 0.34% and 0.16%, respectively. The multiple linear regression, random forest and K-nearest-neighbor models were compared, and the coefficients of determination of the random forest model were all better than those of the multiple linear regression and K-nearest-neighbor (the R2 of tree height was 0.78, 0.51 and 0.19, and the R2 of yield was 0.61, 0.48 and 0.24, respectively). There is no significant difference in the accuracy of using the estimated tree height and measured tree height to participate in yield modeling. 【Conclusion】The combination of crown volume and tree height participation modeling can effectively improve the accuracy of C. oleifera yield estimation, and the results of this study can provide a reference for conducting C. oleifera height and yield surveys using UAV remote sensing technology on a regional scale.

Key words

non-wood forest / yield of Camellia oleifera / random forest(RF) / unmanned aerial vehicle / crown volume / spatial interpolation

Cite this article

Download Citations
WU Jiong , JIANG Fugen , PENG Shaofeng , et al . Estimating the tree height and yield of Camellia oleifera by combining crown volume[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2022, 46(2): 53-62 https://doi.org/10.12302/j.issn.1000-2006.202108051

References

[1]
ZHANG L X, HE Y F, ZHU Y J, et al. Camellia oleifera shell as an alternative feedstock for furfural production using a high surface acidity solid acid catalyst[J]. Bioresour Technol, 2018, 249:536-541. DOI: 10.1016/j.biortech.2017.10.061.
[2]
WU F, LI J R, CHEN Y L, et al. Effects of phosphate solubilizing bacteria on the growth,photosynthesis,and nutrient uptake of Camellia oleifera Abel[J]. Forests, 2019, 10(4):348. DOI: 10.3390/f10040348.
[3]
XIE Y Z, GE S B, JIANG S C, et al. Study on biomolecules in extractives of Camellia oleifera fruit shell by GC-MS[J]. Saudi J Biol Sci, 2018, 25(2):234-236. DOI: 10.1016/j.sjbs.2017.08.006.
[4]
陈永忠, 邓绍宏, 陈隆升, 等. 油茶产业发展新论[J]. 南京林业大学学报(自然科学版), 2020, 44(1):1-10.
CHEN Y Z, DENG S H, CHEN L S, et al. A new view on the development of oil tea Camellia industry[J]. J Nanjing For Univ (Nat Sci Ed), 2020, 44(1):1-10. DOI: 10.3969/j.issn.1000-2006.201909033.
[5]
付虹雨, 崔国贤, 李绪孟, 等. 基于无人机遥感图像的苎麻产量估测研究[J]. 作物学报, 2020, 46(9):1448-1455.
Abstract
本研究旨在探索一种利用无人机-RGB系统提取的苎麻株高和可见光图像光谱信息估测产量的新方法。试验于2019年在湖南农业大学耘园苎麻基地进行, 利用无人机搭载高清数码相机获取二季苎麻苗期和成熟期的图像。首先利用Pix4D mapper生成苎麻冠层2个生育期的数字表面模型和高清数码正射图像; 然后基于数字表面模型采用“差分法”计算试验小区的平均株高(DSM-based H); 基于正射图像提取试验小区RGB通道均值, 进而计算遥感图像数码变量和植被指数, 分析苎麻种质间的图像光谱表型性状和产量株高比性状的差异性与多样性; 最后采用逐步回归方法建立苎麻产量预测模型, 并对各项产量解释因子进行相关性分析。结果表明: (1)基于无人机-RGB系统遥感株高与实测株高显著相关(r=0.90), 修正遥感株高的均方根误差为0.04 m。(2)苎麻产量与株高信息存在极显著相关性(r=0.91), 而与图像光谱表型相关性不明显。(3)融合遥感图像株高和种质特征差异构建的苎麻产量估测模型精度较高, R<sup>2</sup>=0.85, RMSE=0.71。因此, 基于无人机遥感图像的苎麻产量估测是可行的, 这对苎麻种质特征评价和产量估测具有重要的意义。
FU H Y, CUI G X, LI X M, et al. Estimation of ramie yield based on UAV (unmanned aerial vehicle) remote sensing images[J]. Acta Agron Sin, 2020, 46(9):1448-1455. DOI: 10.3724/SP.J.1006.2020.04020.
[6]
GUIMARAES N, PÁDUA L, MARQUES P, et al. Forestry remote sensing from unmanned aerial vehicles: a review focusing on the data,processing and potentialities[J]. Remote Sens, 2020, 12(6):1046. DOI: 10.3390/rs12061046.
[7]
ZENG Y, NING Z H, LIU P, et al. A mosaic method for multi-temporal data registration by using convolutional neural networks for forestry remote sensing applications[J]. Computing, 2020, 102(3):795-811. DOI: 10.1007/s00607-019-00716-5.
[8]
HE M Z, KIMBALL J, MANETA M, et al. Regional crop gross primary productivity and yield estimation using fused Landsat-MODIS data[J]. Remote Sens, 2018, 10(3):372. DOI: 10.3390/rs10030372.
[9]
YANG Q, SHI L S, HAN J Y, et al. Deep convolutional neural networks for rice grain yield estimation at the ripening stage using UAV-based remotely sensed images[J]. Field Crops Res, 2019, 235:142-153. DOI: 10.1016/j.fcr.2019.02.022.
[10]
TUVDENDORJ B, WU B F, ZENG H W, et al. Determination of appropriate remote sensing indices for spring wheat yield estimation in Mongolia[J]. Remote Sens, 2019, 11(21):2568. DOI: 10.3390/rs11212568.
[11]
樊仲谋, 冯仲科, 郑君, 等. 基于立方体格网法的树冠体积计算与预估模型建立[J]. 农业机械学报, 2015, 46(3):320-327.
FAN Z M, FENG Z K, ZHENG J, et al. Tree crown volume calculation and prediction model establishment using cubic lattice method[J]. Trans Chin Soc Agric Mach, 2015, 46(3):320-327. DOI: 10.6041/j.issn.1000-1298.2015.03.047.
[12]
李宗南, 陈仲新, 王利民, 等. 基于小型无人机遥感的玉米倒伏面积提取[J]. 农业工程学报, 2014, 30(19):207-213.
LI Z N, CHEN Z X, WANG L M, et al. Area extraction of maize lodging based on remote sensing by small unmanned aerial vehicle[J]. Trans Chin Soc Agric Eng, 2014, 30(19):207-213. DOI: 10.3969/j.issn.1002-6819.2014.19.025.
[13]
LIN W S, MENG Y, QIU Z W, et al. Measurement and calculation of crown projection area and crown volume of individual trees based on 3D laser-scanned point-cloud data[J]. Int J Remote Sens, 2017, 38(4):1083-1100. DOI: 10.1080/01431161.2016.1265690.
[14]
ZHU Z H, KLEINN C, NÖLKE N. Towards tree green crown volume:a methodological approach using terrestrial laser scanning[J]. Remote Sens, 2020, 12(11):1841. DOI: 10.3390/rs12111841.
[15]
LIU H J, WU C S. Developing a scene-based triangulated irregular network (TIN) technique for individual tree crown reconstruction with LiDAR data[J]. Forests, 2019, 11(1):28. DOI: 10.3390/f11010028.
[16]
刘芳, 冯仲科, 杨立岩, 等. 基于三维激光点云数据的树冠体积估算研究[J]. 农业机械学报, 2016, 47(3):328-334.
LIU F, FENG Z K, YANG L Y, et al. Estimation of tree crown volume based on 3D laser point clouds data[J]. Trans Chin Soc Agric Mach, 2016, 47(3):328-334. DOI: 10.6041/j.issn.1000-1298.2016.03.046.
[17]
林松, 田林亚, 毕继鑫, 等. 三维激光扫描数据的单木树冠体积精确计算[J]. 测绘科学, 2020, 45(8):115-122.
LIN S, TIAN L Y, BI J X, et al. Accurate calculation of single-tree crown volume based on 3D laser scanning data[J]. Sci Surv Mapp, 2020, 45(8):115-122. DOI: 10.16251/j.cnki.1009-2307.2020.08.018.
[18]
吴炅, 彭邵锋, 蒋馥根, 等. 基于多尺度标记优化分水岭方法的油茶冠幅提取[J]. 应用生态学报, 2021, 32(7):2449-2457.
WU J, PENG S F, JIANG F G, et al. Extraction of Camellia oleifera crown width based on the method of optimized watershed with multi-scale markers[J]. Chin J Appl Ecol, 2021, 32(7):2449-2457. DOI: 10.13287/j.1001-9332.202107.010.
[19]
VINCENT L, SOILLE P. Watersheds in digital spaces:an efficient algorithm based on immersion simulations[J]. IEEE Trans Pattern Anal Mach Intell, 1991, 13(6):583-598. DOI: 10.1109/34.87344.
[20]
WOEBBECKE D M, MEYER G E, BARGEN K V, et al. Color indices for weed identification under various soil,residue,and lighting conditions[J]. Trans ASAE, 1995, 38(1):259-269. DOI: 10.13031/2013.27838
[21]
伍艳莲, 赵力, 姜海燕, 等. 基于改进均值漂移算法的绿色作物图像分割方法[J]. 农业工程学报, 2014, 30(24):161-167.
WU Y L, ZHAO L, JIANG H Y, et al. Image segmentation method for green crops using improved mean shift[J]. Trans Chin Soc Agric Eng, 2014, 30(24):161-167. DOI: 10.3969/j.issn.1002-6819.2014.24.019.
[22]
蒋馥根, 孙华, 林辉, 等. 旺业甸林场人工林生物量遥感反演研究[J]. 中南林业科技大学学报, 2019, 39(10):88-94.
JIANG F G, SUN H, LIN H, et al. Remote sensing inversion of plantation biomass in Wangyedian Forest Farm[J]. J Central South Univ For Technol, 2019, 39(10):88-94. DOI: 10.14067/j.cnki.1673-923x.2019.10.013.
[23]
BREIMAN L. Random forests[J]. Machine Learning, 2001, 45(1): 5-32. DOI: 10.1007/978-1-4419-9326-7_5.
[24]
韦雪花, 王永国, 郑君, 等. 基于三维激光扫描点云的树冠体积计算方法[J]. 农业机械学报, 2013, 44(7):235-240.
WEI X H, WANG Y G, ZHENG J, et al. Tree crown volume calculation based on 3-D laser scanning point clouds data[J]. Trans Chin Soc Agric Mach, 2013, 44(7):235-240.
[25]
陈松, 孙华, 吴童, 等. 基于Sentinel-2与机载激光雷达数据的误差变量联立方程组森林蓄积量反演研究[J]. 中南林业科技大学学报, 2020, 40(12):44-53.
CHEN S, SUN H, WU T, et al. Study on the forest volume inversion based on the simultaneous equations of error variables of Sentinel-2 and airborne lidar data[J]. J Central South Univ For Technol, 2020, 40(12):44-53. DOI: 10.14067/j.cnki.1673-923x.2020.12.006.
[26]
周元琦, 王敦亮, 陈晨, 等. 基于无人机RGB图像颜色及纹理特征指数的小麦产量预测[J]. 扬州大学学报(农业与生命科学版), 2021, 42(3):110-116.
ZHOU Y Q, WANG D L, CHEN C, et al. Prediction of wheat yield based on color index and texture feature index of unmanned aerial vehicle RGB image[J]. J Yangzhou Univ (Agric Life Sci Ed), 2021, 42(3):110-116. DOI: 10.16872/j.cnki.1671-4652.2021.03.017.
[27]
龙军, 张黎明, 沈金泉, 等. 复杂地貌类型区耕地土壤有机质空间插值方法研究[J]. 土壤学报, 2014, 51(6):1270-1281.
LONG J, ZHANG L M, SHEN J Q, et al. Spatial interpolation of soil organic matter in farmlands in areas complex in landform[J]. Acta Pedol Sin, 2014, 51(6):1270-1281. DOI: 10.11766/trxb201312110587.
[28]
张军国, 闫浩, 胡春鹤, 等. 无人机在林业中的应用及前景展望[J]. 林业工程学报, 2019, 4(1):8-16.
ZHANG J G, YAN H, HU C H, et al. Application and future development of unmanned aerial vehicle in forestry[J]. J For Eng, 2019, 4(1):8-16. DOI: 10.13360/j.issn.2096-1359.2019.01.002.
PDF(29945 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/