Effects of exogenous ABA on the synthesis of flavonoids in Ginkgo biloba leaves in vivo

LI Tingting, GUO Jing, WANG Guibin

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2023, Vol. 47 ›› Issue (4) : 88-94.

PDF(1609 KB)
PDF(1609 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2023, Vol. 47 ›› Issue (4) : 88-94. DOI: 10.12302/j.issn.1000-2006.202109003

Effects of exogenous ABA on the synthesis of flavonoids in Ginkgo biloba leaves in vivo

Author information +
History +

Abstract

【Objective】The effects of different concentrations of abscisic acid (ABA) on the synthesis of flavonoids in Ginkgo biloba leaves were examined to provide a theoretical basis upon which the internal mechanisms of flavonoid accumulation in G. biloba leaves and leaf forest cultivation could be revealed.【Method】Annual ginkgo seedlings were placed in an artificial climate culture room and treated with exogenous ABA via foliar spraying at five concentration gradients; 0 μmol/L (CK), 50 μmol/L(A1), 100 μmol/L(A2), 150 μmol/L(A3) and 200 μmol/L(A4). The total flavonoid contents, components of G. biloba leaves, and the activities of key enzymes in the flavonoid synthesis pathway were measured, and the expression changes of key enzyme genes involved in G. biloba flavonoid biosynthesis were analyzed using real-time fluorescence quantitative PCR. 【Result】 ABA treatment had a significant effect on both total flavonoid content and components such as quercetin, kaempferol and isorhamnetin. Increasing the ABA concentration led to an initial increase in the total flavonoid and component content, which was followed by a decrease. The highest total flavonoids, quercetin and isorhamnetin were observed under treatment A3, while the highest kaempferol was associated with A2. ABA treatment had a significant effect on the activities of key enzymes that are involved in flavonoid synthesis in G. biloba leaves (PAL, C4H and 4CL); however, differences were observed in the change trends of the different enzymes. PAL enzyme activity increased gradually as ABA concentrations increased; C4H activity increased and decreased alongside the total flavonoid content; 4CL activity was significantly higher under treatments A2 and A3 than the control; however, 4CL activity was lower under A1 and A4 than the control. The results of real-time fluorescence quantitative PCR showed that ABA treatment significantly improves the expression levels of GbPAL,GbC4H,Gb4CL,GbCHS and GbCHI. In general, exogenous ABA improves the flavonoid synthesis in G. biloba leaves, with the best effects observed under treatment A3.【Conclusion】The use of appropriate ABA concentrations can positively regulate the expression of multiple key enzyme genes that code for flavonoid synthesis, improve the activity of key enzymes involved in flavonoid synthesis, and thus promoting the synthesis and accumulation of flavonoids in G. biloba leaves.

Key words

Ginkgo biloba leaves / ABA / flavonoid

Cite this article

Download Citations
LI Tingting , GUO Jing , WANG Guibin. Effects of exogenous ABA on the synthesis of flavonoids in Ginkgo biloba leaves in vivo[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2023, 47(4): 88-94 https://doi.org/10.12302/j.issn.1000-2006.202109003

References

[1]
曹福亮. 中国银杏志[M]. 北京: 中国林业出版社, 2007: 1-3.
CAO F L. Chinese Ginkgo biloba[M]. Beijing: China Forestry Press, 2007: 1-3.
[2]
SEUFI A M, IBRAHIM S S, ELMAGHRABY T K, et al. Preventive effect of the flavonoid, quercetin, on hepatic cancer in rats via oxidant/antioxidant activity: molecular and histological evidences[J]. J Exp Clin Cancer Res, 2009, 28(1): 80. DOI: 10.1186/1756-9966-28-80.
[3]
SHU Z M, SHAR A H, SHAHEN M, et al. Pharmacological uses of Ginkgo biloba extracts for cardiovascular disease and coronary heart diseases[J]. International J Pharmacology, 2019, 15(1): 1-9. DOI: 10.3923/ijp.2019.1.9.
[4]
NODA N, KANNO Y, KATO N, et al. Regulation of gene expression involved in flavonol and anthocyanin biosynthesis during petal development in lisianthus (Eustoma grandiflorum)[J]. Physiologia Plant, 2010, 122(3): 305-313. DOI: 10.1111/j.1399-3054.2004.00407.x.
[5]
徐友. 温度和光强对银杏生长和次生代谢产物合成的影响[D]. 南京: 南京林业大学, 2016.
XU Y. Effects of temperature and light intensity on growth and secondary metabolites biosynthesis of ginkgo (Ginkgo biloba L.) leaves[D]. Nanjing: Nanjing Forestry University, 2016.
[6]
ZHAO B B, WANG L, PANG S Y, et al. UV-B promotes flavonoid synthesis in Ginkgo biloba leaves[J]. Ind Crops Prod, 2020, 151: 112483. DOI: 10.1016/j.indcrop.2020.112483.
[7]
YANG M Y, WANG L, BELWAL T, et al. Exogenous melatonin and abscisic acid expedite the flavonoids biosynthesis in grape berry of Vitis vinifera cv. Kyoho[J]. Molecules, 2020, 25(1): 12. DOI: 10.3390/molecules25010012.
[8]
XU F, CAI R, CHENG S, et al. Molecular cloning, characterization and expression of phenylalanine ammonia-lyase gene from Ginkgo biloba[J]. AFRICAN J BIOTECHNOLOGY, 2008, 7(6): 721-729. DOI: 10.5897/AJB2008.000-5022.
[9]
XU F, LI L L, ZHANG W W, et al. Isolation, characterization, and function analysis of a flavonol synthase gene from Ginkgo biloba[J]. Mol Biol Rep, 2012, 39(3): 2285-2296. DOI: 10.1007/s11033-011-0978-9.
[10]
FERRERO M, PAGLIARANI C, NOVÁK O, et al. Exogenous strigolactone interacts with abscisic acid-mediated accumulation of anthocyanins in grapevine berries[J]. J Exp Bot, 2018, 69(9): 2391-2401. DOI: 10.1093/jxb/ery033.
[11]
BRUNETTI C, SEBASTIANI F, TATTINI M. Review: ABA, flavonols, and the evolvability of land plants[J]. Plant Sci, 2019, 280:448-454. DOI: 10.1016/j.plantsci.2018.12.010.
[12]
王燕, 程水源, 费永俊, 等. 提高银杏叶黄酮含量的调控措施[J]. 湖北农业科学, 2002, 41(5): 103-105.
WANG Y, CHENG S Y, FEI Y J, et al. Studies on the effects of regulating measures on the flavonoids contents in Ginkgo biloba leaves[J]. Hubei Agric Sci, 2002, 41(5): 103-105. DOI: 10.3969/j.issn.0439-8114.2002.05.045.
[13]
JEONG S T, GOTO-YAMAMOTO N, KOBAYASHI S, et al. Effects of plant hormones and shading on the accumulation of anthocyanins and the expression of anthocyanin biosynthetic genes in grape berry skins[J]. Plant Sci, 2004, 167(2):247-252. DOI: 10.1016/j.plantsci.2004.03.021.
[14]
GAI Z S, WANG Y, DING Y Q, et al. Exogenous abscisic acid induces the lipid and flavonoid metabolism of tea plants under drought stress[J]. Sci Rep, 2020, 10(1): 12275. DOI: 10.1038/s41598-020-69080-1.
[15]
国家药典委员会. 中华人民共和国药典一部[M]. 北京: 中国医药科技出版社, 2020.
National Pharmacopoeia Commission. The first pharmacopoeia of the People’s Republic of China[M]. Beijing: China Medical Science and Technology Press, 2020.
[16]
刘家尧, 刘新. 植物生理学实验教程[M]. 北京: 高等教育出版社, 2010: 75-76.
LIU J Y, LIU X. Experimental course of plant physiology[M]. Beijing: Higher Education Press, 2010: 75-76.
[17]
陈雷, 常丽, 曹福亮, 等. 银杏叶黄酮类化合物含量及相关酶活性对温度和干旱胁迫的响应[J]. 西北植物学报, 2013, 33(4): 755-762.
CHEN L, CHANG L, CAO F L, et al. Effects of temperature and soil water deficit on the flavonoid content and activities of enzymes involved in Ginkgo leaves[J]. Acta Bot Boreali-Occidentalia Sin, 2013, 33(4): 755-762. DOI: 10.3969/j.issn.1000-4025.2013.04.017.
[18]
张宏涛, 陈纹, 李小伟, 等. 低温胁迫下肋果沙棘试管苗黄酮类化合物合成关键酶的活性[J]. 北方园艺, 2015(10): 5-8.
ZHANG H T, CHEN W, LI X W, et al. The activity of key enzymes related to flavonoids in test-tube plantlets of Hippophae neurocarpa under low temperature[J]. North Hortic, 2015(10): 5-8. DOI: 10.11937/bfyy.201510002.
[19]
苏西娅, 石元豹, 杨晓明, 等. 银杏实时荧光定量PCR分析中内参基因的选择与验证[J]. 植物生理学报, 2019, 55(6): 875-882.
SU X Y, SHI Y B, YANG X M, et al. Selection and validation of reference genes for quantitative real-time PCR analysis in Ginkgo biloba[J]. Plant Physiol J, 2019, 55(6): 875-882. DOI: 10.13592/j.cnki.ppj.2018.0512.
[20]
于江珊, 张苗苗, 施江, 等. 植物激素对类黄酮代谢调控机制研究进展[J]. 中国中药杂志, 2021, 46(15): 3806-3813.
YU J S, ZHANG M M, SHI J, et al. Research progress on the regulation mechanism of plant hormones on flavonoids metabolism[J]. China J Chin Mater Med, 2021, 46(15): 3806-3813. DOI: 10.19540/j.cnki.cjcmm.20210522.103.
[21]
杨果. 光合作用及外源激素对银杏种实生长发育的影响[D]. 长沙: 中南林业科技大学, 2020.
YANG G. Effects of photosynthesis and exogenous hormones on the growth and development of Ginkgo biloba seeds[D]. Changsha: Central South University of Forestry and Technology, 2020.
[22]
HAO G P, DU X H, ZHAO F X, et al. Fungal endophytes-induced abscisic acid is required for flavonoid accumulation in suspension cells of Ginkgo biloba[J]. Biotechnol Lett, 2010, 32(2): 305-314. DOI: 10.1007/s10529-009-0139-6.
[23]
SUN Y L, LIU Q Z, XI B, et al. Study on the regulation of anthocyanin biosynthesis by exogenous abscisic acid in grapevine[J]. Sci Hortic, 2019, 250: 294-301. DOI: 10.1016/j.scienta.2019.02.054.
[24]
周浩, 强玮, 敖雯雯, 等. 外源脱落酸对钩藤中生物碱合成的影响[J/OL]. 分子植物育种:1-15(2021-08-16)[2023-06-12].
ZHOU H, QIANG W, AO W W, et al. Effect of exogenous abscisic acid on biosynthesis of alkaloids in Uncaria[J/OL]. Molecular Plant Breeding:1-15(2021-08-16)[2023-06-12]. http://kns.cnki.net/kcms/detail/4b.1068.s.20210816.1404.006.html.
[25]
诸姮, 胡宏友, 卢昌义, 等. 植物体内的黄酮类化合物代谢及其调控研究进展[J]. 厦门大学学报(自然科学版), 2007, 46(增刊1):136-143.
ZHU H, HU H Y, LU C Y, et al. Progresses on flavonoid metabolism in plants and it's regulation[J]. J Xiamen Univ (Nat Sci), 2007, 46(S1): 136-143. DOI: 10.3321/j.issn:0438-0479.2007.z1.030.
[26]
JIAN Z, DAVIS L C, VERPOORTE R. Elicitor signal transduction leading to production of plant secondary metabolites[J]. Biotechnol Adv, 2005, 23(4): 283-333. DOI: 10.1016/j.biotechadv.2005.01.003.
[27]
李栋栋. 脱落酸调控草莓果实成熟的分子机理和关键miRNA调控因子的探究[D]. 杭州: 浙江大学, 2019.
LI D D. The mechanism of abscisic acid-regulated strawberry fruit ripening and identification of key miRNAs involved[D]. Hangzhou: Zhejiang University, 2019.
[28]
员盎然, 孙小娟, 马小雯, 等. GA3与ABA对黑穗醋栗二次萌芽总酚含量及代谢酶活性的影响[J]. 南方农业学报, 2019, 50(6): 1263-1270.
YUAN A R, SUN X J, MA X W, et al. Effects of GA3 and ABA on the content of phenolic substances and metabolic enzyme activities in the secondary bud burst of black currant (Ribes nigrum L.)[J]. J South Agric, 2019, 50(6): 1263-1270. DOI: 10.3969/j.issn.2095-1191.2019.06.15.
[29]
田晓艳, 刘延吉. 脱落酸对南果梨色素及部分合成关键酶的影响[J]. 北方园艺, 2008(12): 155-156.
TIAN X Y, LIU Y J. The effect of ABA on cyanidin content and partial synthetic key enzymes of Nanguo pear[J]. North Hortic, 2008(12): 155-156.
[30]
XU Y, WANG G B, CAO F L, et al. Light intensity affects the growth and flavonol biosynthesis of ginkgo (Ginkgo biloba L.)[J]. New For, 2014, 45(6): 765-776. DOI: 10.1007/s11056-014-9435-7.
[31]
ANWAR M, YU W J, YAO H, et al. NtMYB3, an R2R3-MYB from Narcissus, regulates flavonoid biosynthesis[J]. Int J Mol Sci, 2019, 20(21): 5456. DOI: 10.3390/ijms20215456.
[32]
WANG F B, ZHU H, CHEN D H, et al. A grape bHLH transcription factor gene,VvbHLH1, increases the accumulation of flavonoids and enhances salt and drought tolerance in transgenic Arabidopsis thaliana[J]. Plant Cell Tiss Organ Cult, 2016, 125(2):387-398. DOI: 10.1007/s11240-016-0953-1.
[33]
伍小方, 高国应, 左倩, 等. FtMYB1转录因子调控苦荞毛状根黄酮醇合成的机理研究[J]. 植物遗传资源学报, 2020, 21(5): 1270-1278.
WU X F, GAO G Y, ZUO Q, et al. Deciphering the functional basis of FtMYB1 transcription factor in flavonol biosynthesis of tartary buckwheat hairy root[J]. J Plant Genet Resour, 2020, 21(5): 1270-1278. DOI: 10.13430/j.cnki.jpgr.20200118001.
PDF(1609 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/