JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (5): 11-19.doi: 10.12302/j.issn.1000-2006.202109014
Special Issue: “双碳”视域下的生态系统固碳增汇(2)
Previous Articles Next Articles
Received:
2021-09-07
Revised:
2022-03-22
Online:
2022-09-30
Published:
2022-10-19
Contact:
SHEN Wenxing
E-mail:wdwnanjing@163.com;swx@njfu.edu.cn
CLC Number:
WANG Dawei, SHEN Wenxing. The carbon storage calaulation and carbon sequestration potential analysis of the main artificial arboreal forest in China[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(5): 11-19.
Table 1
Area and volume of main plantations at each age group in China"
龄组 age class | 面积/×105 hm2 area | 总蓄积量/×105 m3 total volume | ||||
---|---|---|---|---|---|---|
第8次 the 8th | 第9次 the 9th | 变化 change | 第8次 the 8th | 第9次 the 9th | 变化 change | |
幼龄林young | 125.2 | 232.6 | 107.4 | 2 531.3 | 5 854.1 | 3 322.8 |
中龄林middle-aged | 108.3 | 169.7 | 61.4 | 6 886.6 | 11 144.5 | 4 257.9 |
近熟林near mature | 48.9 | 80.7 | 31.8 | 4 333.1 | 7 226 9 | 2 893.8 |
成熟林mature | 37.2 | 65.9 | 28.7 | 3 513.6 | 7 200.1 | 3 686.5 |
过熟林over-mature | 11.4 | 22.3 | 10.9 | 980.6 | 2 450.4 | 1 469.8 |
合计 total | 331.0 | 571.2 | 240.2 | 18 245.2 | 33 876.0 | 15 630.8 |
Table 2
Area and volumn of main plantations"
人工林 plantation | 面积/×105 hm2 area | 总蓄积量/×105 m3 total volume | 单位面积蓄积量/ (m3·hm-2) volume | |||
---|---|---|---|---|---|---|
第8次 the 8th | 第9次 the 9th | 第8次 the 8th | 第9次 the 9th | 第8次 the 8th | 第9次 the 9th | |
杉木林 Cunninghamia lanceolata forest | 89.5 | 99.0 | 6 254.0 | 7 555.4 | 69.88 | 76.31 |
杨树林 poplar forest | 85.4 | 75.7 | 5 029.6 | 5 463.0 | 58.89 | 70.49 |
桉树林 eucalyptus forest | 44.6 | 54.7 | 1 603.3 | 2 156.3 | 35.95 | 39.42 |
落叶松林 larch forest | 31.4 | 31.6 | 1 841.4 | 2 374.4 | 58.64 | 75.14 |
马尾松林 Pinus massoniana forest | 30.6 | 25.2 | 1 715.5 | 1 876.3 | 56.06 | 74.46 |
油松林 Pinus tabuliformis forest | 12.3 | 17.8 | 269.9 | 516.0 | 21.94 | 28.99 |
合计total | 293.8 | 300.4 | 16 713.7 | 19 941.4 |
Table 3
Carbon measurement parameters of six main plantations at different age groups in China"
人工林 plantation | 参数 parameter | 幼龄林 young | 中龄林 middle- aged | 近熟林 near mature | 成熟林 mature | 过熟林 over- mature |
---|---|---|---|---|---|---|
杉木林 Cunninghamia lanceolata forest | BEF | 1.634 | 2.035 | 1.323 | 1.273 | 1.209 |
RSR | 0.246 | 0.292 | 0.223 | 0.210 | 0.191 | |
WD | 0.307 | 0.307 | 0.307 | 0.307 | 0.307 | |
CF | 0.520 | 0.520 | 0.520 | 0.520 | 0.520 | |
杨树林 poplar forest | BEF | 1.446 | 1.496 | 1.369 | 1.390 | 1.460 |
RSR | 0.227 | 0.259 | 0.227 | 0.171 | 0.209 | |
WD | 0.378 | 0.378 | 0.378 | 0.378 | 0.378 | |
CF | 0.496 | 0.496 | 0.496 | 0.496 | 0.496 | |
桉树林 eucalyptus forest | BEF | 1.263 | 1.297 | 1.178 | 1.165 | 1.138 |
RSR | 0.221 | 0.219 | 0.221 | 0.181 | 0.270 | |
WD | 0.578 | 0.578 | 0.578 | 0.578 | 0.578 | |
CF | 0.525 | 0.525 | 0.525 | 0.525 | 0.525 | |
落叶松林 larch forest | BEF | 1.416 | 1.644 | 1.281 | 1.229 | 1.150 |
RSR | 0.212 | 0.205 | 0.211 | 0.188 | 0.239 | |
WD | 0.490 | 0.490 | 0.490 | 0.490 | 0.490 | |
CF | 0.521 | 0.521 | 0.521 | 0.521 | 0.521 | |
马尾松林 Pinus massoniana forest | BEF | 1.472 | 2.033 | 1.305 | 1.185 | 1.250 |
RSR | 0.187 | 0.196 | 0.181 | 0.167 | 0.196 | |
WD | 0.380 | 0.380 | 0.380 | 0.380 | 0.380 | |
CF | 0.460 | 0.460 | 0.460 | 0.460 | 0.460 | |
油松林 Pinus tabuliformis forest | BEF | 1.589 | 1.811 | 1.519 | 1.468 | 1.571 |
RSR | 0.277 | 0.247 | 0.264 | 0.196 | 0.234 | |
WD | 0.360 | 0.360 | 0.360 | 0.360 | 0.360 | |
CF | 0.500 | 0.500 | 0.500 | 0.500 | 0.500 |
Table 4
Logistic fitting equation of accumulation per unit area and forest age of artificial arbor forest (group) for main dominant tree species"
人工林 plantation | a | b | c | R2 |
---|---|---|---|---|
杉木林 Cunninghamia lanceolata forest | 124.719 | 11.400 | 0.195 | 0.968 |
杨树林 poplar forest | 116.847 | 16.262 | 0.257 | 0.995 |
桉树林 eucalyptus forest | 73.730 | 8.556 | 0.247 | 0.888 |
落叶松林 larch forest | 133.950 | 18.696 | 0.136 | 0.998 |
马尾松林 Pinus massoniana forest | 174.735 | 7.014 | 0.055 | 0.955 |
油松林 Pinus tabuliformis forest | 93.818 | 26.393 | 0.099 | 0.998 |
Table 5
The carbon density and carbon storage at different age groups of six main plantations in China"
人工林 plantation | 时间 time | 幼龄林 young | 中龄林 middle-aged | 近熟林 near mature | 成熟林 mature | 过熟林 over-mature | 平均 碳密度 average carbon density | 碳储量 合计 total carbon storage | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
碳密度 carbon density | 碳储量 carbon storage | 碳密度 carbon density | 碳储量 carbon storage | 碳密度 carbon density | 碳储量 carbon storage | 碳密度 carbon density | 碳储量 carbon storage | 碳密度 carbon density | 碳储量 carbon storage | ||||
杉木 Cunninghamia lanceolata forest | 2009—2013 | 9.21 | 30.62 | 33.59 | 96.52 | 40.70 | 56.06 | 50.34 | 59.12 | 59.98 | 11.86 | 38.76 | 193.82 |
2014—2018 | 10.18 | 47.34 | 37.21 | 93.05 | 34.42 | 37.86 | 34.89 | 46.75 | 38.11 | 11.81 | 30.96 | 236.81 | |
杨树 poplar forest | 2009—2013 | 11.29 | 34.05 | 20.78 | 53.77 | 25.34 | 27.57 | 27.33 | 30.62 | 22.47 | 16.29 | 21.44 | 107.48 |
2014—2018 | 11.69 | 24.32 | 26.92 | 52.76 | 28.55 | 37.69 | 28.95 | 38.79 | 28.94 | 25.47 | 25.01 | 179.03 | |
桉树 eucalyptus forest | 2009—2013 | 5.73 | 9.95 | 17.57 | 27.64 | 24.21 | 13.40 | 31.10 | 15.04 | 39.20 | 4.26 | 23.56 | 70.65 |
2014—2018 | 6.59 | 17.33 | 26.23 | 44.85 | 27.18 | 14.14 | 32.28 | 10.98 | 45.44 | 11.81 | 27.54 | 99.11 | |
落叶松 larch forest | 2009—2013 | 11.30 | 18.32 | 32.10 | 28.31 | 43.01 | 18.46 | 46.95 | 9.71 | 26.54 | 0.17 | 31.98 | 74.97 |
2014—2018 | 15.78 | 22.72 | 44.28 | 37.64 | 48.65 | 24.33 | 50.82 | 18.30 | 39.41 | 0.24 | 39.79 | 103.23 | |
马尾松 Pinus massoniana forest | 2009—2013 | 7.06 | 5.50 | 14.07 | 14.95 | 18.71 | 15.50 | 25.09 | 9.36 | 40.04 | 0.77 | 21.00 | 46.08 |
2014—2018 | 8.58 | 4.89 | 29.53 | 23.33 | 24.39 | 17.07 | 28.39 | 11.92 | 35.28 | 1.06 | 25.23 | 58.27 | |
油松 Pinus tabuliformis forest | 2009—2013 | - | - | - | - | - | - | - | - | - | - | - | - |
2014—2018 | 6.71 | 6.56 | 10.74 | 3.64 | 13.81 | 1.54 | 18.91 | 1.03 | 31.02 | 0.32 | 16.24 | 13.09 |
Table 6
Carbon storage and carbon density of main plantations in China"
项目 item | 清查时间 inventor time | 幼龄林 young | 中龄林 middle-aged | 近熟林 near mature | 成熟林 mature | 过熟林 over-mature | 合计 total |
---|---|---|---|---|---|---|---|
碳储量/ Tg carbon storage | 2009—2013 | 68.31 | 203.81 | 284.44 | 335.93 | 231.61 | 1 124.10 |
2014—2018 | 105.15 | 292.34 | 359.75 | 426.43 | 439.19 | 1 622.86 | |
变化change | 37.00 | 88.53 | 75.20 | 90.50 | 207.58 | 498.81 | |
碳密度/(Mg·hm-2) carbon density | 2009—2013 | 110.35 | 259.90 | 143.58 | 132.84 | 35.33 | 136.40 |
2014—2018 | 169.12 | 348.09 | 190.38 | 178.13 | 59.17 | 188.98 | |
变化change | 58.77 | 88.19 | 46.80 | 45.29 | 23.84 | 52.58 |
Table 8
Carbon storage and carbon density of forests in different provinces of China in year of 2035"
省(市、区) region | 单位面积 蓄积量/ (m3·hm-2) volume | 碳储量/ Tg carbon storage | 碳储量 占比/ % percentage | 碳密度/ (Mg·hm-2) carbon density | 省(市、区) region | 单位面积 蓄积量/ (m3·hm-2) volume | 碳储量/ Tg carbon storage | 碳储量 占比/ % percentage | 碳密度/ (Mg·hm-2) carbon density |
---|---|---|---|---|---|---|---|---|---|
北京Beijing | 33.22 | 6.27 | 0.10 | 14.62 | 河南Henan | 55.98 | 72.10 | 1.18 | 23.61 |
天津Tianjin | 49.74 | 1.42 | 0.02 | 18.88 | 湖南Hunan | 45.26 | 121.15 | 1.97 | 16.56 |
河北Hebei | 34.65 | 43.03 | 0.70 | 13.83 | 广东Guangdong | 49.92 | 151.69 | 2.47 | 21.22 |
山西Shanxi | 46.28 | 44.04 | 0.72 | 20.93 | 广西Guangxi | 56.34 | 202.93 | 3.31 | 22.45 |
内蒙古Inner Mongolia | 78.53 | 565.52 | 9.22 | 33.01 | 海南Hainan | 91.69 | 40.06 | 0.65 | 41.25 |
辽宁Liaoning | 64.28 | 114.38 | 1.87 | 29.38 | 重庆Chongqing | 69.47 | 51.62 | 0.84 | 24.48 |
黑龙江Heilongjiang | 84.37 | 736.13 | 12.00 | 37.76 | 四川Sichuan | 141.92 | 628.93 | 10.25 | 53.13 |
吉林Jilin | 122.45 | 431.44 | 7.03 | 57.26 | 贵州Guizhou | 62.83 | 113.26 | 1.85 | 23.66 |
上海Shanghai | 42.74 | 0.85 | 0.01 | 19.57 | 云南Yunnan | 110.88 | 767.20 | 12.50 | 50.24 |
江苏Jiangsu | 51.69 | 22.06 | 0.36 | 17.63 | 西藏Tibet | 266.59 | 888.05 | 14.47 | 104.66 |
浙江Zhejiang | 52.87 | 82.46 | 1.34 | 20.11 | 陕西Shaanxi | 61.93 | 202.53 | 3.30 | 31.68 |
安徽Anhui | 61.97 | 66.70 | 1.09 | 22.87 | 甘肃Gansu | 86.79 | 88.58 | 1.44 | 35.84 |
福建Fujian | 100.20 | 237.85 | 3.88 | 39.20 | 宁夏Ningxia | 41.66 | 2.81 | 0.05 | 17.75 |
江西Jiangxi | 51.70 | 163.38 | 2.66 | 20.68 | 新疆Xinjiang | 187.81 | 120.58 | 1.97 | 67.29 |
山东Shandong | 55.25 | 33.47 | 0.55 | 20.73 | 全国national | 89.79 | 6 135.68 | 100.00 | 37.28 |
[1] | MATAMALA R, GONZÀLEZ-MELER M A, JASTROW J D, et al. Impacts of fine root turnover on forest NPP and soil C sequestration potential[J]. Science, 2003, 302(5649):1385-1387.DOI:10.1126/science.1089543. |
[2] | HUANG Y, SUN W J, ZHANG W, et al. Changes in soil organic carbon of terrestrial ecosystems in China:a mini-review[J]. Sci China Life Sci, 2010, 53(7):766-775.DOI:10.1007/s11427-010-4022-4. |
[3] | 刘国华, 傅伯杰, 方精云. 中国森林碳动态及其对全球碳平衡的贡献[J]. 生态学报, 2000, 20(5):733-740. |
LIU G H, FU B J, FANG J Y. Carbon dynamics of Chinese forests and its contribution to global carbon balance[J]. Acta Ecol Sin, 2000, 20(5):733-740.DOI:10.3321/j.issn:1000-0933.2000.05.004. | |
[4] | 陈家新, 杨红强. 全球森林及林产品碳科学研究进展与前瞻[J]. 南京林业大学学报(自然科学版), 2018, 42(4):1-8. |
CHEN J X, YANG H Q. Advances and frontiers in global forest and harvested wood products carbon science[J]. J Nanjing For Univ (Nat Sci Ed), 2018, 42(4):1-8.DOI:10.3969/j.issn.1000-2006.201801035. | |
[5] | 马学威, 熊康宁, 张俞, 等. 森林生态系统碳储量研究进展与展望[J]. 西北林学院学报, 2019, 34(5):62-72. |
MA X W, XIONG K N, ZHANG Y, et al. Research progresses and prospects of carbon storage in forest ecosystems[J]. J Northwest For Univ, 2019, 34(5):62-72.DOI:10.3969/j.issn.1001-7461.2019.05.10. | |
[6] | PAN Y D, BIRDSEY R A, FANG J Y, et al. A large and persistent carbon sink in the world's forests[J]. Science, 2011, 333(6045):988-993.DOI:10.1126/science.1201609. |
[7] | 国家林业局. 第八次全国森林资源清查报告[M]. 北京: 中国林业出版社, 2013. |
SFA. The 8th national forest inventory data of China[M]. Beijing: China Forestry Publishing House, 2013. | |
[8] | 国家林业和草原局. 中国森林资源清查报告 (2014-2018)[M]. 北京: 中国林业出版社, 2019. |
SFA. The 9th national forest inventory data of China[M]. Beijing: China Forestry Publishing House. 2019. | |
[9] | IPCC. Working group Ⅲ report “mitigation of climate change”:forestry[R]. Cambridge: Cambridge University Press, 2007. |
[10] | 国家发展和改革委员会应对气候变化司. 中国温室气体清单研究[M]. 北京: 中国环境出版社, 2014. |
Department of Climate Change National Development and Reform Commission of Chinaa. The People's Republic of China national greenhouse gas inventory[M]. Beijing: China Environmental Science Press, 2014. | |
[11] | 胡鞍钢. 中国实现2030年前碳达峰目标及主要途径[J]. 北京工业大学学报(社会科学版), 2021, 21(3):1-15. |
HU A G. China's goal of achieving carbon peak by 2030 and its main approaches[J]. J Beijing Univ Technol (Soc Sci Ed), 2021, 21(3):1-15.DOI:10.12120/bjutskxb202103001. | |
[12] | 程鹏飞, 王金亮, 王雪梅, 等. 森林生态系统碳储量估算方法研究进展[J]. 林业调查规划, 2009, 34(6):39-45. |
CHENG P F, WANG J L, WANG X M, et al. Research progress in estimating carbon storage of forest ecosystem[J]. For Invent Plan, 2009, 34(6):39-45.DOI:10.3969/j.issn.1671-3168.2009.06.011. | |
[13] | 吴国训, 唐学君, 阮宏华, 等. 基于森林资源清查的江西省森林碳储量及固碳潜力研究[J]. 南京林业大学学报(自然科学版), 2019, 43(1):105-110. |
WU G X, TANG X J, RUAN H H, et al. Carbon storage and carbon sequestration potential based on forest inventory data in Jiangxi Province,China[J]. J Nanjing For Univ (Nat Sci Ed), 2019, 43(1):105-110.DOI:10.3969/j.issn.1000-2006.201711051. | |
[14] | 曾伟生, 孙乡楠, 王六如, 等. 东北林区10种主要森林类型的蓄积量、生物量和碳储量模型研建[J]. 北京林业大学学报, 2021, 43(3):1-8. |
ZENG W S, SUN X N, WANG L R, et al. Developing stand volume,biomass and carbon stock models for ten major forest types in forest region of northeastern China[J]. J Beijing For Univ, 2021, 43(3):1-8.DOI:10.12171/j.1000-1522.20200058. | |
[15] | HOUGHTON R A. Aboveground forest biomass and the global carbon balance[J]. Glob Change Biol, 2005, 11(6):945-958.DOI:10.1111/j.1365-2486.2005.00955.x. |
[16] | 王兵, 牛香, 宋庆丰. 基于全口径碳汇监测的中国森林碳中和能力分析[J]. 环境保护, 2021, 49(16):30-34. |
WANG B, NIU X, SONG Q F. Analysis of forest carbon sequestration capacity in China based on forest full aperture carbon sequestration[J]. Environ Prot, 2021, 49(16):30-34.DOI:10.14026/j.cnki.0253-9705.2021.16.011. | |
[17] | 贾黎明, 刘诗琦, 祝令辉, 等. 我国杨树林的碳储量和碳密度[J]. 南京林业大学学报(自然科学版), 2013, 37(2):1-7. |
JIA L M, LIU S Q, ZHU L H, et al. Carbon storage and density of poplars in China[J]. J Nanjing For Univ (Nat Sci Ed), 2013, 37(2):1-7 | |
[18] | 方精云, 朴世龙, 赵淑清. CO2失汇与北半球中高纬度陆地生态系统的碳汇[J]. 植物生态学报, 2001, 25(5):594-602. |
FANG J Y, PIAO S L, ZHAO S Q. The carbon sink:the role of the middle and high latitudes terrestrial ecosystems in the Northern Hemisphere[J]. Chin J Plant Ecol, 2001, 25(5):594-602. | |
[19] | 胡会峰, 刘国华. 森林管理在全球CO2减排中的作用[J]. 应用生态学报, 2006, 17(4):709-714. |
HU H F, LIU G H. Roles of forest management in global carbon dioxide mitigation[J]. Chin J Appl Ecol, 2006, 17(4):709-714. | |
[20] | RICHARDS K R, STOKES C. A review of forest carbon sequestration cost studies:a dozen years of research[J]. Clim Change, 2004, 63(1/2):1-48.DOI:10.1023/b:clim.0000018503.10080.89. |
[21] | HU H F, WANG S P, GUO Z D, et al. The stage-classified matrix models project a significant increase in biomass carbon stocks in China's forests between 2005 and 2050[J]. Sci Rep, 2015, 5:11203.DOI:10.1038/srep11203. |
[22] | HOOVER C M. Assessing seven decades of carbon accumulation in two US northern hardwood forests[J]. Forests, 2011, 2(3):730-740.DOI:10.3390/f2030730. |
[23] | 李海玲, 陈乐蓓, 方升佐, 等. 不同杨-农间作模式碳储量及分布的比较[J]. 林业科学, 2009, 45(11):9-14. |
LI H L, CHEN L B, FANG S Z, et al. Comparison of carbon storage and distribution in different poplar-crop intercropping patterns[J]. Sci Silvae Sin, 2009, 45(11):9-14.DOI:10.3321/j.issn:1001-7488.2009.11.002. | |
[24] | 李海奎, 雷渊才, 曾伟生. 基于森林清查资料的中国森林植被碳储量[J]. 林业科学, 2011, 47(7):7-12. |
LI H K, LEI Y C, ZENG W S. Forest carbon storage in China estimated using forestry inventory data[J]. Sci Silvae Sin, 2011, 47(7):7-12. | |
[25] | 黄从德, 张健, 杨万勤, 等. 四川省及重庆地区森林植被碳储量动态[J]. 生态学报, 2008, 28(3):966-975. |
HUANG C D, ZHANG J, YANG W Q, et al. Dynamics on forest carbon stock in Sichuan Province and Chongqing City[J]. Acta Ecol Sin, 2008, 28(3):966-975.DOI:10.3321/j.issn:1000-0933.2008.03.008. | |
[26] | BLACKARD J A, FINCO M V, HELMER E H, et al. Mapping US forest biomass using nationwide forest inventory data and moderate resolution information[J]. Remote Sens Environ, 2008, 112(4):1658-1677.DOI:10.1016/j.rse.2007.08.021. |
[1] | YANG Yuping, HU Wenmin, JIA Guanyu, LI Guo, LI Yi. Scenario simulation integrating the ANN-CA model with the InVEST model to investigate land-based carbon storage in the Dongting Lake area [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(4): 175-184. |
[2] | SHEN Hao, JIANG Jiang, ZHOU Chen, PAN Qingquan. Research on factors driving carbon storage in broad-leaved forests of different origins from Shicheng, Jiangxi Province [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(4): 185-190. |
[3] | ZHANG Yucheng, HAN Nianlong, HU Ke, YU Miao, LI Xingqiang. The impact of land-use changes on the spatio-temporal variation of carbon storage in the central mountainous area of Hainan Island [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(2): 115-122. |
[4] | LEI Haiqing, SUN Gaoqiu, ZHENG Deli. Carbon storage of forest ecosystem in Wenzhou City, Zhejiang Province, China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(5): 20-26. |
[5] | XIAO Jun. Dynamic changes in carbon storage and strategies to increase carbon sink of natural arbor forests in Fujian Province, China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(5): 27-32. |
[6] | WANG Youliang, LIN Kaimin, SONG Chongsheng, CUI Chaowei, PENG Lihong, ZHENG Hong, ZHENG Mingming, REN Zhengbiao, QIU Mingjing. Short-term effects of thinning on carbon storage in Chinese fir plantation ecosystems [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(3): 65-73. |
[7] | LIU Ke, LI Mingyang, LI Ling, TIAN Kang, FAN Ya’nan, WANG Zhigang, QU Mingkai, HUANG Biao. Spatial heterogeneity of the soil organic carbon density and its driving factors in the water source area of the Middle Route of China South-to-North Water Diversion Project [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(2): 35-43. |
[8] | XIN Shidong, JIANG Lichun, MU Lin. Predictive model of stand tree layer additive carbon storage of Korean pine plantation in Heilongjiang Province, China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(1): 115-121. |
[9] | LUO Yan, HE Pengjun, LYU Qian, FAN Chuan, FENG Maosong, LI Xianwei, CHEN Luman. Early effect of target tree management on carbon storage in Pinus massoniana plantations [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(2): 206-214. |
[10] | QUAN Wei, ZHENG Fangdong, RONG Jiantao. Soil carbon density and C/N distribution of seven forest types in Wuyanling Nature Reserve, Zhejiang Province [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2019, 43(01): 175-180. |
[11] | TIAN Yaowu,LIU Yifeng,WANG Cong,WANG Gang,HE Wuyuheng. Correlation between forest soil organic carbon density and environmental factors in Funiu Mountain, Henan Province [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2019, 43(01): 83-90. |
[12] | WU Guoxun, TANG Xuejun, RUAN Honghua, LUO Xifang. Carbon storage and carbon sequestration potential based on forest inventory data in Jiangxi Province, China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2019, 43(01): 105-110. |
[13] | FAN Lihong, ZHU Jianhua, LI Qi, FENG Yuan, XIAO Wenfa. Effects of changes in land use and cover on carbon storage in the Three Gorges Reservoir Area [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2018, 42(04): 53-60. |
[14] | DAI Qianshi, HU Jue, LI Jianjun. Estimation and analysis of variation characteristic of forest carbon density in Hunan Province using continuous forest inventory data [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2017, 41(04): 129-135. |
[15] | MO Zhuping, TONG Dewen, YUAN Sheng, WEI Liquan, ZHANG Xiaoquan. Monitoring of carbon storage based on the CDM reforestation project of Zhu River Basin in Guangxi [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2015, 39(03): 156-160. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||