The carbon storage calaulation and carbon sequestration potential analysis of the main artificial arboreal forest in China

WANG Dawei, SHEN Wenxing

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (5) : 11-19.

PDF(1522 KB)
PDF(1522 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (5) : 11-19. DOI: 10.12302/j.issn.1000-2006.202109014

The carbon storage calaulation and carbon sequestration potential analysis of the main artificial arboreal forest in China

Author information +
History +

Abstract

【Objective】Carbon from the forest plays a dominant role in contributing the development to terrestrial ecosystem. Therefore, the purpose of this study is to predict the carbon sink potential of artificial trees by determining their carbon density and value-added carbon storage potential. The results of the study can further improve the structure of the artificial main forest age groups, improve the sustainable management levels of the forest, provide scientific basis for increasing the artificial tree forest unit area, and achieve the goal of increasing the amount of foreign exchange in China.【Method】This study applied the data of area and volume of the dominate tree species in China. The data are all from the 8th (2009-2013) and the 9th (2014-2018) national forest inventory data of China. Moreover, adopted the IPCC volume-biomass method to calculate the carbon storage and carbon density of the six main artificial arboreal forest. Meanwhile, the changing patterns and age group structure characteristics of the carbon storage and density of artificial arboreal forests in China were also analyzed between the two inventories. The aim of this step was to comprehensively analyze and evaluate China's artificial forest under age structures of carbon sequestration function; furthermore, the fitted unit area accumulation-forest-age logistic regression growth equation was applied and the IPCC volume-biomass methods were combined to calculate the accumulation of different ages of each dominant tree species after decades. The purpose was to estimate the data of carbon storage and carbon density of China's existing artificial arboreal forest in future stages.【Result】During the two inventory periods, the total carbon storage of the main artificial forest increased by 498.81 Tg, with an average annual increase of 99.76 Tg. The carbon storage from the highest to the lowest forest age groups in China was in the following order: over-matured forests (439.19 Tg) > mature forests (426.43 Tg) > near-mature forests (359.75 Tg) > middle-aged forests (292.34 Tg) > young forests (105.15 Tg). Carbon density from the lowest to the highest age groups in China were in the following order: over-matured forests (59.17 Mg/hm2) < young forests (169.12 Mg/hm2) < mature forests (178.13 Mg/hm2) < near-mature forests (190.38 Mg/hm2) < middle age forests (348.09 Mg/hm2). With regard to the future carbon sequestration capacity of artificial forests in China, the analysis results predict that the carbon storage and density of artificial arboreal forests based on current data will increase to 1 716.27 Tg and 36.51 Mg/hm2, with an increase of 92.92% and 93.17%, respectively, compared with the values in 2015.【Conclusion】The carbon storage of the six main artificial forest increased significantly between the two inventories. Carbon storage shows a linear positive increase trend, while carbon density does not show a linear increase due to the effect of accumulation of the area and the volume. Moreover, by the year of 2035, the carbon storage of artificial forest will account for about 20% of the total carbon storage, of which the area of young-aged and middle-aged trees will account for 64.66% of the total area of trees in China, and it can be predicted that the carbon storage of main artificial arboreal forest will have great potential for increase.

Key words

artificial arboreal forest / carbon density / carbon storage / carbon sequestration potential / volume-biomass methods / Logistic growth curves

Cite this article

Download Citations
WANG Dawei , SHEN Wenxing. The carbon storage calaulation and carbon sequestration potential analysis of the main artificial arboreal forest in China[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2022, 46(5): 11-19 https://doi.org/10.12302/j.issn.1000-2006.202109014

References

[1]
MATAMALA R, GONZÀLEZ-MELER M A, JASTROW J D, et al. Impacts of fine root turnover on forest NPP and soil C sequestration potential[J]. Science, 2003, 302(5649):1385-1387.DOI:10.1126/science.1089543.
[2]
HUANG Y, SUN W J, ZHANG W, et al. Changes in soil organic carbon of terrestrial ecosystems in China:a mini-review[J]. Sci China Life Sci, 2010, 53(7):766-775.DOI:10.1007/s11427-010-4022-4.
[3]
刘国华, 傅伯杰, 方精云. 中国森林碳动态及其对全球碳平衡的贡献[J]. 生态学报, 2000, 20(5):733-740.
LIU G H, FU B J, FANG J Y. Carbon dynamics of Chinese forests and its contribution to global carbon balance[J]. Acta Ecol Sin, 2000, 20(5):733-740.DOI:10.3321/j.issn:1000-0933.2000.05.004.
[4]
陈家新, 杨红强. 全球森林及林产品碳科学研究进展与前瞻[J]. 南京林业大学学报(自然科学版), 2018, 42(4):1-8.
CHEN J X, YANG H Q. Advances and frontiers in global forest and harvested wood products carbon science[J]. J Nanjing For Univ (Nat Sci Ed), 2018, 42(4):1-8.DOI:10.3969/j.issn.1000-2006.201801035.
[5]
马学威, 熊康宁, 张俞, 等. 森林生态系统碳储量研究进展与展望[J]. 西北林学院学报, 2019, 34(5):62-72.
MA X W, XIONG K N, ZHANG Y, et al. Research progresses and prospects of carbon storage in forest ecosystems[J]. J Northwest For Univ, 2019, 34(5):62-72.DOI:10.3969/j.issn.1001-7461.2019.05.10.
[6]
PAN Y D, BIRDSEY R A, FANG J Y, et al. A large and persistent carbon sink in the world's forests[J]. Science, 2011, 333(6045):988-993.DOI:10.1126/science.1201609.
[7]
国家林业局. 第八次全国森林资源清查报告[M]. 北京: 中国林业出版社, 2013.
SFA. The 8th national forest inventory data of China[M]. Beijing: China Forestry Publishing House, 2013.
[8]
国家林业和草原局. 中国森林资源清查报告 (2014-2018)[M]. 北京: 中国林业出版社, 2019.
SFA. The 9th national forest inventory data of China[M]. Beijing: China Forestry Publishing House. 2019.
[9]
IPCC. Working group Ⅲ report “mitigation of climate change”:forestry[R]. Cambridge: Cambridge University Press, 2007.
[10]
国家发展和改革委员会应对气候变化司. 中国温室气体清单研究[M]. 北京: 中国环境出版社, 2014.
Department of Climate Change National Development and Reform Commission of Chinaa. The People's Republic of China national greenhouse gas inventory[M]. Beijing: China Environmental Science Press, 2014.
[11]
胡鞍钢. 中国实现2030年前碳达峰目标及主要途径[J]. 北京工业大学学报(社会科学版), 2021, 21(3):1-15.
HU A G. China's goal of achieving carbon peak by 2030 and its main approaches[J]. J Beijing Univ Technol (Soc Sci Ed), 2021, 21(3):1-15.DOI:10.12120/bjutskxb202103001.
[12]
程鹏飞, 王金亮, 王雪梅, 等. 森林生态系统碳储量估算方法研究进展[J]. 林业调查规划, 2009, 34(6):39-45.
CHENG P F, WANG J L, WANG X M, et al. Research progress in estimating carbon storage of forest ecosystem[J]. For Invent Plan, 2009, 34(6):39-45.DOI:10.3969/j.issn.1671-3168.2009.06.011.
[13]
吴国训, 唐学君, 阮宏华, 等. 基于森林资源清查的江西省森林碳储量及固碳潜力研究[J]. 南京林业大学学报(自然科学版), 2019, 43(1):105-110.
WU G X, TANG X J, RUAN H H, et al. Carbon storage and carbon sequestration potential based on forest inventory data in Jiangxi Province,China[J]. J Nanjing For Univ (Nat Sci Ed), 2019, 43(1):105-110.DOI:10.3969/j.issn.1000-2006.201711051.
[14]
曾伟生, 孙乡楠, 王六如, 等. 东北林区10种主要森林类型的蓄积量、生物量和碳储量模型研建[J]. 北京林业大学学报, 2021, 43(3):1-8.
ZENG W S, SUN X N, WANG L R, et al. Developing stand volume,biomass and carbon stock models for ten major forest types in forest region of northeastern China[J]. J Beijing For Univ, 2021, 43(3):1-8.DOI:10.12171/j.1000-1522.20200058.
[15]
HOUGHTON R A. Aboveground forest biomass and the global carbon balance[J]. Glob Change Biol, 2005, 11(6):945-958.DOI:10.1111/j.1365-2486.2005.00955.x.
[16]
王兵, 牛香, 宋庆丰. 基于全口径碳汇监测的中国森林碳中和能力分析[J]. 环境保护, 2021, 49(16):30-34.
WANG B, NIU X, SONG Q F. Analysis of forest carbon sequestration capacity in China based on forest full aperture carbon sequestration[J]. Environ Prot, 2021, 49(16):30-34.DOI:10.14026/j.cnki.0253-9705.2021.16.011.
[17]
贾黎明, 刘诗琦, 祝令辉, 等. 我国杨树林的碳储量和碳密度[J]. 南京林业大学学报(自然科学版), 2013, 37(2):1-7.
JIA L M, LIU S Q, ZHU L H, et al. Carbon storage and density of poplars in China[J]. J Nanjing For Univ (Nat Sci Ed), 2013, 37(2):1-7
[18]
方精云, 朴世龙, 赵淑清. CO2失汇与北半球中高纬度陆地生态系统的碳汇[J]. 植物生态学报, 2001, 25(5):594-602.
FANG J Y, PIAO S L, ZHAO S Q. The carbon sink:the role of the middle and high latitudes terrestrial ecosystems in the Northern Hemisphere[J]. Chin J Plant Ecol, 2001, 25(5):594-602.
[19]
胡会峰, 刘国华. 森林管理在全球CO2减排中的作用[J]. 应用生态学报, 2006, 17(4):709-714.
HU H F, LIU G H. Roles of forest management in global carbon dioxide mitigation[J]. Chin J Appl Ecol, 2006, 17(4):709-714.
[20]
RICHARDS K R, STOKES C. A review of forest carbon sequestration cost studies:a dozen years of research[J]. Clim Change, 2004, 63(1/2):1-48.DOI:10.1023/b:clim.0000018503.10080.89.
[21]
HU H F, WANG S P, GUO Z D, et al. The stage-classified matrix models project a significant increase in biomass carbon stocks in China's forests between 2005 and 2050[J]. Sci Rep, 2015, 5:11203.DOI:10.1038/srep11203.
[22]
HOOVER C M. Assessing seven decades of carbon accumulation in two US northern hardwood forests[J]. Forests, 2011, 2(3):730-740.DOI:10.3390/f2030730.
[23]
李海玲, 陈乐蓓, 方升佐, 等. 不同杨-农间作模式碳储量及分布的比较[J]. 林业科学, 2009, 45(11):9-14.
LI H L, CHEN L B, FANG S Z, et al. Comparison of carbon storage and distribution in different poplar-crop intercropping patterns[J]. Sci Silvae Sin, 2009, 45(11):9-14.DOI:10.3321/j.issn:1001-7488.2009.11.002.
[24]
李海奎, 雷渊才, 曾伟生. 基于森林清查资料的中国森林植被碳储量[J]. 林业科学, 2011, 47(7):7-12.
LI H K, LEI Y C, ZENG W S. Forest carbon storage in China estimated using forestry inventory data[J]. Sci Silvae Sin, 2011, 47(7):7-12.
[25]
黄从德, 张健, 杨万勤, 等. 四川省及重庆地区森林植被碳储量动态[J]. 生态学报, 2008, 28(3):966-975.
HUANG C D, ZHANG J, YANG W Q, et al. Dynamics on forest carbon stock in Sichuan Province and Chongqing City[J]. Acta Ecol Sin, 2008, 28(3):966-975.DOI:10.3321/j.issn:1000-0933.2008.03.008.
[26]
BLACKARD J A, FINCO M V, HELMER E H, et al. Mapping US forest biomass using nationwide forest inventory data and moderate resolution information[J]. Remote Sens Environ, 2008, 112(4):1658-1677.DOI:10.1016/j.rse.2007.08.021.
PDF(1522 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/