Effects of topography on the soil fertility quality in Quercus acutissima plantation

LI Huizhi, GUAN Qingwei, ZHAO Jiahao, LI Junjie, WANG Lei, LI Fengfeng, ZUO Xingping, CHEN Bin

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (5) : 161-168.

PDF(1529 KB)
PDF(1529 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (5) : 161-168. DOI: 10.12302/j.issn.1000-2006.202109023

Effects of topography on the soil fertility quality in Quercus acutissima plantation

Author information +
History +

Abstract

【Objective】 Quercus acutissima is among the main tree species in warm temperate and subtropical forests of China. This study aims to investigate the effects of topography on the soil fertility quality of Q. acutissima plantation, in purpose of providing theoretical bases for rational utilization of forest resources. 【Method】In this study, we analyzed 15 soil indexes of five types of topographies (gentle slope, concave sunny slope, convex sunny slope, concave shady slope and convex shady slope) in Q. acutissima plantation. Then, the minimum data set of soil quality evaluation by combining principal component analysis and correlation analysis. The soil quality of Q. acutissima plantation was also comprehensively evaluated using the weighted additive index. 【Result】Among the five types of topography, concave sunny slope had the highest levels of pH, soil organic matter, total nitrogen content, and total potassium content; concave shady slope had the highest levels of soil total phosphorus content, available phosphorus content, soil microbial nitrogen content, urease activity and acid phosphatase activity; and convex shady slope had the lowest level of soil bulk density. The results of principal component analysis and correlation analysis suggested that the smallest data set for soil fertility quality evaluation should include soil organic matter, pH, bulk density, urease activity, and invertase activity. In different topographies, the rank of soil fertility quality index in different topographies was concave sunny slope (0.533) > gentle slope (0.511) > concave shady slope (0.510) > convex shady slope (0.495) > convex sunny slope (0.482). 【Conclusion】In this studied Q. acutissima plantation, the topography significantly influenced the soil fertility quality via its effects on five key indicators, i.e., soil pH, organic matter, soil bulk density, urease activity and invertase activity. The concave sunny slope facilitated the accumulation of soil nutrients, leading to the highest level of soil fertility quality among different topographic types.

Key words

topography / Quercus acutissima plantation / soil physical and chemical properties / soil enzyme activities / soil quality evaluation

Cite this article

Download Citations
LI Huizhi , GUAN Qingwei , ZHAO Jiahao , et al . Effects of topography on the soil fertility quality in Quercus acutissima plantation[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2022, 46(5): 161-168 https://doi.org/10.12302/j.issn.1000-2006.202109023

References

[1]
骆东奇, 白洁, 谢德体. 论土壤肥力评价指标和方法[J]. 土壤与环境, 2002, 11(2):202-205.
LUO D Q, BAI J, XIE D T. Research on evaluation norm and method of soil fertility[J]. Soil Environ Sci, 2002, 11(2):202-205.DOI:10.3969/j.issn.1674-5906.2002.02.020.
[2]
赵其国, 孙波, 张桃林. 土壤质量与持续环境 Ⅰ.土壤质量的定义及评价方法[J]. 土壤, 1997, 29(3):113-120.
ZHAO Q G, SUN B, ZHANG T L. Soil quality and sustainable environment Ⅰ: definition and evaluation methods of soil quality[J]. Soils, 1997, 29(3):113-120.
[3]
刘强, 穆兴民, 高鹏, 等. 土壤水力侵蚀对土壤质量理化指标影响的研究综述[J]. 水土保持研究, 2020, 27(6):386-392.
LIU Q, MU X M, GAO P, et al. Review of studies on the effects of soil water erosion on physical and chemical properties of soil quality[J]. Res Soil Water Conserv, 2020, 27(6):386-392.DOI:10.13869/j.cnki.rswc.2020.06.049.
[4]
刘伟玮, 刘某承, 李文华, 等. 辽东山区林参复合经营土壤质量评价[J]. 生态学报, 2017, 37(8):2631-2641.
LIU W W, LIU M C, LI W H, et al. Soil quality assessment of a forest-ginseng agroforestry system in the mountainous region of eastern Liaoning Province, northeast China[J]. Acta Ecol Sin, 2017, 37(8):2631-2641.DOI:10.5846/stxb201601230160.
[5]
张智勇, 刘广全, 艾宁, 等. 吴起县退耕还林后主要植被类型土壤质量评价[J]. 干旱区资源与环境, 2021, 35(2):81-87.
ZHANG Z Y, LIU G Q, AI N, et al. Soil quality evaluation of main vegetation types after conversion of farmland to forest in Wuqi County[J]. J Arid Land Resour Environ, 2021, 35(2):81-87.DOI:10.13448/j.cnki.jalre.2021.043.
[6]
WENINGER T, KAMPTNER E, DOSTAL T, et al. Detection of physical hazards in soil profiles using quantitative soil physical quality assessment in the Pannonian Basin, eastern Austria[J]. Int Agrophys, 2020, 34(4):463-471.DOI:10.31545/intagr/130450.
[7]
SWANEPOEL P A, DU PREEZ C C, BOTHA P R, et al. Assessment of tillage effects on soil quality of pastures in South Africa with indexing methods[J]. Soil Res, 2015, 53(3):274.DOI:10.1071/sr14234.
[8]
NABIOLLAHI K, GOLMOHAMADI F, TAGHIZADEH-MEHRJARDI R, et al. Assessing the effects of slope gradient and land use change on soil quality degradation through digital mapping of soil quality indices and soil loss rate[J]. Geoderma, 2018, 318:16-28.DOI:10.1016/j.geoderma.2017.12.024.
[9]
黄昌勇. 土壤学[M]. 北京: 中国农业出版社, 1999.
HUANG C Y. Soil[M]. Beijing: China Agriculture Press, 1999.
[10]
廖全兰, 龙翠玲, 薛飞, 等. 茂兰喀斯特森林不同地形土壤酶活性及养分特征[J]. 森林与环境学报, 2020, 40(2):164-170.
LIAO Q L, LONG C L, XUE F, et al. Soil enzyme and nutrient characteristics of different terrains in Maolan Karst forest[J]. J For Environ, 2020, 40(2):164-170.DOI:10.13324/j.cnki.jfcf.2020.02.008.
[11]
GOPP N V, NECHAEVA T V, SAVENKOV O A, et al. Effect of slope mesorelief on the spatial variability of soil properties and vegetation index based on remote sensing data[J]. Izv Atmos Ocean Phys, 2019, 55(9):1329-1337.DOI:10.1134/s0001433819090202.
[12]
LIU W J, JIANG Y M, YANG Q, et al. Spatial distribution and stability mechanisms of soil organic carbon in a tropical montane rainforest[J]. Ecol Indic, 2021, 129:107965.DOI:10.1016/j.ecolind.2021.107965.
[13]
吴昊. 秦岭山地松栎混交林土壤养分空间变异及其与地形因子的关系[J]. 自然资源学报, 2015, 30(5):858-869.
WU H. The relationship between terrain factors and spatial variability of soil nutrients for pine-oak mixed forest in Qinling Mountains[J]. J Nat Resour, 2015, 30(5):858-869.DOI:10.11849/zrzyxb.2015.05.013.
[14]
NAGAMATSU D, HIRABUKI Y, MOCHIDA Y. Influence of micro-landforms on forest structure,tree death and recruitment in a Japanese temperate mixed forest[J]. Ecol Res, 2003, 18(5):533-547.DOI:10.1046/j.1440-1703.2003.00576.x.
[15]
史青茹, 许洺山, 赵延涛, 等. 浙江天童木本植物Corner法则的检验:微地形的影响[J]. 植物生态学报, 2014, 38(7):665-674.
SHI Q R, XU M S, ZHAO Y T, et al. Testing of Corner's rules across woody plants in Tiantong region,Zhejiang Province:effects of micro-topography[J]. Chin J Plant Ecol, 2014, 38(7):665-674.DOI:10.3724/SP.J.1258.2014.00061.
[16]
赵家豪, 袁景西, 袁在翔, 等. 武夷山南方铁杉针阔混交林不同地形土壤营养元素分析[J]. 南京林业大学学报(自然科学版), 2020, 44(4):176-182.
ZHAO J H, YUAN J X, YUAN Z X, et al. An analysis of soil nutrient elements in different terrains of coniferous(Tsuga chinensis var.tchekiangensis) and broadleaf mixed forest in Jiangxi Wuyishan[J]. J Nanjing For Univ (Nat Sci Ed), 2020, 44(4):176-182.DOI:10.3969/j.issn.1000-2006.201902009.
[17]
王宝荣, 杨佳佳, 安韶山, 等. 黄土丘陵区植被与地形特征对土壤和土壤微生物生物量生态化学计量特征的影响[J]. 应用生态学报, 2018, 29(1):247-259.
WANG B R, YANG J J, AN S S, et al. Effects of vegetation and topography features on ecological stoichiometry of soil and soil microbial biomass in the hilly-gully region of the Loess Plateau,China[J]. Chin J Appl Ecol, 2018, 29(1):247-259.DOI:10.13287/j.1001-9332.201801.039.
[18]
张兴旺, 李垚, 方炎明. 麻栎在中国的地理分布及潜在分布区预测[J]. 西北植物学报, 2014, 34(8):1685-1692.
ZHANG X W, LI Y, FANG Y M. Geographical distribution and prediction of potential ranges of Quercus acutissima in China[J]. Acta Bot Boreali Occidentalia Sin, 2014, 34(8):1685-1692.DOI:10.7606/j.issn.1000-4025.2014.08.1685.
[19]
李成, 高鹏, 董学德, 等. 泰山麻栎人工林降雨截留特征及修正的Gash模型模拟[J]. 中国水土保持科学, 2020, 18(3):31-38.
LI C, GAO P, DONG X D, et al. Canopy interception characteristics of Quercus acutissima plantation forest in Mountain Tai,China and its estimation by the revised Gash model[J]. Sci Soil Water Conserv, 2020, 18(3):31-38.DOI:10.16843/j.sswc.2020.03.004.
[20]
阮存鑫, 胡海波, 季婧, 等. 长江三角洲地区麻栎和栓皮栎蒸腾规律及其对气候因子的响应[J]. 水土保持学报, 2021, 35(2):338-344.
RUAN C X, HU H B, JI J, et al. Transpiration regulations and responses to climate factors of Quercus acutissima and Quercus variabilis in the Changjiang River Delta area[J]. J Soil Water Conserv, 2021, 35(2):338-344.DOI:10.13870/j.cnki.stbcxb.2021.02.045.
[21]
常猛, 崔莉娜, 葛波, 等. 长三角地区麻栎林生长季小气候调节效应研究[J]. 西北林学院学报, 2020, 35(5):16-22.
CHANG M, CUI L N, GE B, et al. Microclimate regulating effect of Quercus acutissima forest in the Yangtze River Delta during growing season[J]. J Northwest For Univ, 2020, 35(5):16-22.DOI:10.3969/j.issn.1001-7461.2020.05.03.
[22]
王霞, 胡海波, 张世豪, 等. 不同林龄麻栎林地下部分生物量与碳储量研究[J]. 生态学报, 2019, 39(22):8556-8564.
WANG X, HU H B, ZHANG S H, et al. Underground biomass and carbon storage for Quercus acutissima forests of different ages[J]. Acta Ecol Sin, 2019, 39(22):8556-8564.DOI:10.5846/stxb201809141994.
[23]
范洪旺, THANG B, 陶晓, 等. 城乡空间差异对麻栎林土壤活性有机碳的影响[J]. 南京林业大学学报(自然科学版), 2020, 44(4):151-158.
FAN H W, THANG B, TAO X, et al. Effects of spatial difference between urban and rural areas on soil active organic carbon in Quercus acutissima forests[J]. J Nanjing For Univ (Nat Sci Ed), 2020, 44(4):151-158.DOI:10.3969/j.issn.1000-2006.201907016.
[24]
满慧. 锦屏山森林公园的植被生态恢复与优化发展研究[D]. 南京: 南京农业大学, 2006.
MAN H. Study on ecological vegetation restoration & optimization development of Jinping Mountain Forest Park[D]. Nanjing: Nanjing Agricultural University, 2006.DOI:10.7666/d.Y1009954.
[25]
袁振, 魏松坡, 贾黎明, 等. 河北平山片麻岩山区微地形植物群落异质性[J]. 北京林业大学学报, 2017, 39(2):49-57.
YUAN Z, WEI S P, JIA L M, et al. Differentiation of vegetation characteristics on micro-topography in gneiss mountainous area of Pingshan County,Hebei Province of northern China[J]. J Beijing For Univ, 2017, 39(2):49-57.DOI:10.13332/j.1000-1522.20160277.
[26]
王利, 任启龙, 杨生彪. 辽宁省地形分类标准及分区方案研究[J]. 辽宁师范大学学报(自然科学版), 2015, 38(3):391-398.
WANG L, REN Q L, YANG S B. Study on terrain classification standard and zoning scheme of Liaoning Province[J]. J Liaoning Norm Univ (Nat Sci Ed), 2015, 38(3):391-398.DOI:10.11679/lsxblk2015030391.
[27]
鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000.
BAO S D. Soil and agricultural chemistry analysis[M]. 3rd Ed. Beijing: China Agriculture Press, 2000.
[28]
关松荫. 土壤酶及其研究法[M]. 北京: 中国农业出版社, 1986:123-339.
GUAN S Y. Soil enzymes and their research methods[M]. Beijing: China Agriculture Press, 1986:123-339.
[29]
许彦崟, 林杰, 李建伟, 等. 漆树林5种种植模式下的土壤质量综合评价[J]. 西北林学院学报, 2021, 36(3):74-79,93.
XU Y Y, LIN J, LI J W, et al. A comprehensive evaluation of soil quality among lacquer plantations with 5 planting patterns[J]. J Northwest For Univ, 2021, 36(3):74-79,93.DOI:10.3969/j.issn.1001-7461.2021.03.11.
[30]
ZHANG Z Y, AI N, LIU G Q, et al. Soil quality evaluation of various microtopography types at different restoration modes in the loess area of northern Shaanxi[J]. Catena, 2021, 207:105633.DOI:10.1016/j.catena.2021.105633.
[31]
张丽星, 海春兴, 常耀文, 等. 羊草及芨芨草草原和西北针茅草原土壤质量评价[J]. 草业学报, 2021, 30(4):68-79.
ZHANG L X, HAI C X, CHANG Y W, et al. Evaluation of soil quality in Leymus chinensis-Achnatherum splendens grassland and in Stipa sareptana grassland[J]. Acta Prataculturae Sin, 2021, 30(4):68-79.DOI:10.11686/cyxb2020371.
[32]
刘慧敏, 韩海荣, 程小琴, 等. 不同密度调控强度对华北落叶松人工林土壤质量的影响[J]. 北京林业大学学报, 2021, 43(6):50-59.
LIU H M, HAN H R, CHENG X Q, et al. Effects of different density regulation intensities on soil quality in Larix principis-rupprechtii plantation[J]. J Beijing For Univ, 2021, 43(6):50-59.DOI:10.12171/j.1000-1522.20200322.
[33]
刘昊, 杨董琳. 不同森林类型林地土壤质量评价[J]. 山东农业大学学报(自然科学版), 2021, 52(4):607-614.
LIU H, YANG D L. Evaluation for soil quality of forest land in different forest types[J]. J Shandong Agric Univ (Nat Sci Ed), 2021, 52(4):607-614.DOI:10.3969/j.issn.1000-2324.2021.04.014.
[34]
高瑞睿, 李雪梅, 高培. 地形异质性对天山山区气候的影响分析[J]. 干旱区地理, 2017, 40(1):197-203.
GAO R R, LI X M, GAO P. Impact of topographic heterogeneity on the climate in Tianshan Mountainous area[J]. Arid Land Geogr, 2017, 40(1):197-203.DOI:10.13826/j.cnki.cn65-1103/x.2017.01.025.
[35]
BISWAS A. Joint multifractal analysis for three variables: characterizing the effect of topography and soil texture on soil water storage[J]. Geoderma, 2019, 334:15-23.DOI:10.1016/j.geoderma.2018.07.035.
[36]
翟朝阳, 陈高安, 杨新峰, 等. 微地形对大西沟野杏幼苗生境的气候和土壤温湿度的影响[J]. 中国农学通报, 2019, 35(27):114-120.
ZHAI Z Y, CHEN G A, YANG X F, et al. Micro-topography in daxigou: effects on climatic and soil temperature and moisture in the habitat of Armeniaca vulgaris Lam.seedling[J]. Chin Agric Sci Bull, 2019, 35(27):114-120.DOI:10.11924/j.issn.1000-6850.casb18040106.
[37]
ZHANG Q Y, WANG Z, YAO Y F, et al. Effects of slope morphology and position on soil nutrients after deforestation in the hilly loess region of China[J]. Agric Ecosyst Environ, 2021, 321:107615.DOI:10.1016/j.agee.2021.107615.
[38]
YIN X, QIAN H, SUI X H, et al. Effects of climate and topography on the diversity anomaly of plants disjunctly distributed in eastern Asia and eastern North America[J]. Global Ecol Biogeogr, 2021, 30(10):2029-2042.DOI:10.1111/geb.13366.
[39]
林炳青, 陈莹, 陈兴伟. SWAT模型水文过程参数区域差异研究[J]. 自然资源学报, 2013, 28(11):1988-1999.
LIN B Q, CHEN Y, CHEN X W. A study on regional difference of hydrological parameters of SWAT model[J]. J Nat Resour, 2013, 28(11):1988-1999.DOI:10.11849/zrzyxb.2013.11.015.
[40]
薛飞, 龙翠玲, 廖全兰, 等. 喀斯特森林凋落物对土壤养分及土壤酶的影响[J]. 森林与环境学报, 2020, 40(5):449-458.
XUE F, LONG C L, LIAO Q L, et al. An analysis of litter,soil, stoichiometry,and soil enzymes in Karst forest[J]. J For Environ, 2020, 40(5):449-458.DOI:10.13324/j.cnki.jfcf.2020.05.001.
[41]
李丽娟, 李昌晓, 陈春桦, 等. 三峡消落带适生植物根系活动调控土壤养分与细菌群落多样性特征[J]. 环境科学, 2020, 41(6):2898-2907.
LI L J, LI C X, CHEN C H, et al. Root activities of re-vegetated plant species regulate soil nutrients and bacterial diversity in the riparian zone of the Three Gorges reservoir[J]. Environ Sci, 2020, 41(6):2898-2907.DOI:10.13227/j.hjkx.201911214.
[42]
彭玉娇, 崔学宇, 邵元元, 等. 不同树龄沙田柚果园土壤肥力、叶片养分和土壤细菌群落的特征[J]. 江苏农业学报, 2021, 37(2):348-354.
PENG Y J, CUI X Y, SHAO Y Y, et al. Characteristic of soil fertility, leaf mineral nutrients and bacterial community in Shatian pomelo orchards of different tree ages[J]. Jiangsu J Agric Sci, 2021, 37(2):348-354. DOI:10.3969/j.issn.1000-4440.2021.02.010.
[43]
刘玲, 王海燕, 戴伟, 等. 长白山低山区森林土壤有机碳及养分空间异质性[J]. 应用生态学报, 2014, 25(9):2460-2468.
LIU L, WANG H Y, DAI W, et al. Spatial heterogeneity of soil organic carbon and nutrients in low mountain area of Changbai Mountains[J]. Chin J Appl Ecol, 2014, 25(9):2460-2468.DOI:10.13287/j.1001-9332.20140709.003.
[44]
杨佳佳, 安韶山, 张宏, 等. 黄土丘陵区小流域侵蚀环境对土壤微生物量及酶活性的影响[J]. 生态学报, 2015, 35(17):5666-5674.
YANG J J, AN S S, ZHANG H, et al. Effect of erosion on soil microbial biomass and enzyme activity in the Loess Hills[J]. Acta Ecol Sin, 2015, 35(17):5666-5674.DOI:10.5846/stxb201310302611.
[45]
GEROY I J, GRIBB M M, MARSHALL H P, et al. Aspect influences on soil water retention and storage[J]. Hydrol Process, 2011, 25(25):3836-3842.DOI:10.1002/hyp.8281.
[46]
程晓月, 许宏刚, 朱亚灵, 等. 兰州市中心城区道路绿地土壤pH和养分特征[J]. 草业科学, 2021, 38(3):468-479.
CHENG X Y, XU H G, ZHU Y L, et al. Study on soil pH and nutrients in a roadside green belt in a central urban area of Lanzhou[J]. Pratacultural Sci, 2021, 38(3):468-479.DOI:10.11829/j.issn.1001-0629.2020-0245.
[47]
董祥洲, 陈亚奎, 任立伟, 等. 微生物转化在秸秆还田中的应用进展[J]. 生物加工过程, 2020, 18(5):604-611.
DONG X Z, CHEN Y K, REN L W, et al. Advances in the application of biotransformation in straw returning to field[J]. Chi J Bio Eng, 2020, 18(5):604-611.DOI:10.3969/j.issn.1672-3678.2020.05.010.
[48]
张娜, 王希华, 郑泽梅, 等. 浙江天童常绿阔叶林土壤的空间异质性及其与地形的关系[J]. 应用生态学报, 2012, 23(9):2361-2369.
ZHANG N, WANG X H, ZHENG Z M, et al. Spatial heterogeneity of soil properties and its relationships with terrain factors in broadleaved forest in Tiantong of Zhejiang Province, east China[J]. Chin J Appl Ecol, 2012, 23(9):2361-2369.DOI:10.13287/j.1001-9332.2012.0327.
PDF(1529 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/