Effects of external 24-epibrassinolide (EBR) application on the development and physiological characteristics of Ginkgo biloba leaves

WANG Mengke, YANG Xiaoming, WANG Guibin, ZHOU Tinging, GUO Ying, GUO Jing

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2023, Vol. 47 ›› Issue (4) : 81-87.

PDF(1459 KB)
PDF(1459 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2023, Vol. 47 ›› Issue (4) : 81-87. DOI: 10.12302/j.issn.1000-2006.202109026

Effects of external 24-epibrassinolide (EBR) application on the development and physiological characteristics of Ginkgo biloba leaves

Author information +
History +

Abstract

【Objective】 To better understand how 24-epibrassinolide (EBR) affects the development and physiological characteristics of ginkgo, different concentrations were sprayed onto ginkgo leaves, laying a theoretical basis upon which the oriented cultivation of ginkgo can be applied. 【Method】 Ginkgo leaves were placed in a randomized block design and treated with different concentrations of EBR (0-2.0 mg/L). The growth index, photosynthetic characteristics, and hormone content of EBR-treated annual seedlings were measured. 【Result】 The growth of ginkgo seedlings differed significantly following EBR treatment (P <0.05), with 1.0 mg/L EBR leading to increases of 23.6%, 52.6%, 140.2%, 87.7% and 69.1% in the maximum leaf length, leaf area, plant height, leaf weight and total weight, respectively, as compared to the control. Treatment with 1.5 mg/L (BR3) and 2.0 mg/L (BR4) led to increases of 40.2% and 41.5%, respectively, in the net photosynthetic rate as compared to the control. The maximum content of the endogenous hormones dihydrozein, indolepropionic acid, gibberellin, and abscisic acid and the minimum auxin content was observed under 1.5 mg/L EBR. The content of endogenous brassinolide was significantly positively correlated with the contents of methyl jasmonic and indolepropionic acid and negatively correlated with zeatin (R > 0.5, P < 0.05). 【Conclusion】 The results indicate that the exogenous spraying of ginkgo with EBR is an effective agronomic measure that could improve the net photosynthetic rate of gingko, while also regulating the content of endogenous hormones in the plant, thus promoting stem elongation, leaf area expansion, and leaf dry weight accumulation.

Key words

ginkgo(Ginkgo biloba) / 24-epibrassinolide(EBR) / endogenous hormone

Cite this article

Download Citations
WANG Mengke , YANG Xiaoming , WANG Guibin , et al . Effects of external 24-epibrassinolide (EBR) application on the development and physiological characteristics of Ginkgo biloba leaves[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2023, 47(4): 81-87 https://doi.org/10.12302/j.issn.1000-2006.202109026

References

[1]
曹福亮. 中国银杏志[M]. 北京: 中国林业出版社, 2007:1-3.
CAO F L. Chinese Ginkgo biloba[M]. Beijing: China Forestry Publishing House, 2007:1-3.
[2]
HEISS C, KEEN C L, KELM M. Flavanols and cardiovascular disease prevention[J]. Eur Heart J, 2010, 31(21): 2583-2592. DOI: 10.1093/eurheartj/ehq332.
[3]
却枫, 查若飞, 魏强. 植物纤维素合成酶研究进展[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 207-214.
QUE F, ZHA R F, WEI Q. Advances in research of cellulose synthase genes in plants[J]. J Nanjing For Univ (Nat Sci Ed), 2022, 46(6): 207-214.DOI: 10.12302/j.issn.1000-2006.202105039.
[4]
李不凡. 油菜素甾醇调控甘蓝型油菜生长发育的机制及研究激素处理影响胚珠发育的简易方法[D]. 上海: 上海交通大学, 2018.
LI B F. Mechanism of brassica napus growth and development regulated by brassinosteroid and a simple method for hormone treatment affecting ovule development[D]. Shanghai: Shanghai Jiaotong University, 2018.
[5]
SONG L I, ZHOU X Y, LI L I, et al. Genome-wide analysis revealed the complex regulatory network of brassinosteroid effects in photomorphogenesis[J]. Molecular Plant, 2009, 2(4): 755-772.
[6]
NOLAN T M, VUKASINOVIC N, LIU D, et al. Brassinosteroids: multidimensional regulators of plant growth, development, and stress responses[J]. The Plant Cell, 2020, 32(2): 295-318.
[7]
王灵燕. 油菜素内酯调控拟南芥黄化幼苗转绿的分子机制研究[D]. 济南: 山东大学, 2020.
WANG L Y. Molecular mechanism of brassinolide regulating the greening of arabidopsis yellowing seedlings[D]. Ji'nan: Shandong University, 2020.
[8]
LI X, WEI J P, AHAMMED G J, et al. Brassinosteroids attenuate moderate high temperature-caused decline in tea quality by enhancing theanine biosynthesis in Camellia sinensis L.[J]. Front Plant Sci, 2018, 9: 1016.DOI: 10.3389/fpls.2018.01016.
[9]
张弦, 王志博, 聂雅婷, 等. 茉莉酸甲酯和油菜素内酯减轻苹果叶片光抑制的生理机制研究[J]. 西北农业学报, 2017, 26(6): 906-915.
ZHANG X, WANG Z B, NIE Y T, et al. Alleviation of photoinhibition by methyl jasmornate and brassinolide under strong light in apple leaves[J]. Northwest Agricultural Journal, 2017, 26(6): 906-915.
[10]
胡春红, 郭婕, 陈龙, 等. 防腐剂胁迫下外源芸苔素内酯对玉米幼苗生长及抗性的影响[J]. 2014, 40(2), 113-116.
HU C H, GUO J, CHEN L, et al. Influence of exogenous brassinolide on the growth and resistance of maize seedling with preservative stress[J]. 2014, 40( 2), 113-116 DOI:10.13331/j.cnki.jhau.2014.02.001.
[11]
VERGARA A E, DÍAZ K, CARVAJAL R, et al. Exogenous applications of brassinosteroids improve color of Red Table Grape (Vitis vinifera L. cv. Redglobe) berries[J]. Front Plant Sci, 2018, 9: 363.
[12]
王小璐. 24-表油菜素内酯对猕猴桃果实冷藏品质的影响及其机理[D]. 西安: 西北大学, 2020.
WANG X L. Effect of 24-epibrassinolide on the cold storage quality of kiwifruit and its mechanism[D]. Xi'an: Northwest University, 2020.
[13]
ZHAO M, YUAN L, WANG J, et al. Transcriptome analysis reveals a positive effect of brassinosteroids on the photosynthetic capacity of wucai under low temperature[J]. BMC Genomics, 2019, 20(1): 810.
[14]
ZHENG L, MA J, ZHANG L, et al. Revealing critical mechanisms of BR-mediated apple nursery tree growth using iTRAQ-based proteomic analysis[J]. Journal of Proteomics, 2018, 173: 139-154.
[15]
GUO Y, GAO C Y, WANG M K, et al. Metabolome and transcriptome analyses reveal flavonoids biosynthesis differences in Ginkgo biloba associated with environmental conditions[J]. Ind Crops Prod, 2020, 158:112963. DOI: 10.1016/j.indcrop.2020.112963.
[16]
钱龙梁, 薛源, 曹福亮, 等. 生物遮阴对银杏幼苗生长的影响[J]. 中南林业科技大学学报, 2018, 38(10):21-26.
QIAN L L, XUE Y, CAO F L, et al. Effects of biological shading on growth of ginkgo seedlings[J]. J Central South Univ For Technol, 2018, 38(10):21-26. DOI: 10.14067/j.cnki.1673-923x.2018.10.004.
[17]
ZHAO J, LI G, YI G X, et al. Comparison between conventional indirect competitive enzyme-linked immunosorbent assay (icELISA) and simplified icELISA for small molecules[J]. Anal Chimica Acta, 2006, 571(1): 79-85. DOI: 10.1016/j.aca.2006.04.060.
[18]
YANG J, ZHANG J, WANG Z, et al. Hormonal changes in the grains of rice subjected to water stress during grain filling[J]. Plant Physiol, 2001, 127(1): 315-323. DOI: 10.1104/pp.127.1.315.
[19]
YANG Y M, XU C N, WANG B M, et al. Effects of plant growth regulators on secondary wall thickening of cotton fibres[J]. Plant Growth Regul, 2001, 35(3): 233-237. DOI: 10.1023/A:1014442015872.
[20]
王鼎豪, 刘宇, 国颖, 等. 外源激素对银杏叶中黄酮类化合物积累的影响[J]. 经济林研究, 2020, 38(2): 123-130.
WANG D H, LIU Y, GUO Y, et al. Effects of exogenous hormones on accumulation of flavonoids in Ginkgo biloba leaves[J]. Nonwood For Res, 2020, 38(2): 123-130. DOI: 10.14067/j.cnki.1003-8981.2020.02.015.
[21]
CHOE S. Brassinosteroid biosynthesis and inactivation[J]. Physiol Plant, 2006, 126(4): 539-548. DOI: 10.1111/j.1399-3054.2006.00681.x.
[22]
KHRIPACH V, ZHABINSKII V, DE GROOT A. Twenty years of brassinosteroids: steroidal plant hormones warrant better crops for the XXI century[J]. Ann Bot, 2000, 86(3): 441-447. DOI: 10.1006/anbo.2000.1227.
[23]
郑洁, 王磊. 油菜素内酯在植物生长发育中的作用机制研究进展[J]. 中国农业科技导报, 2014, 16(1):52-58.
ZHENG J, WANG L. Advance in mechanism of brassinosteroids in plant development[J]. J Agric Sci Technol, 2014, 16(1): 52-58.
[24]
AZPIROZ R, WU Y, LOCASCIO J C, et al. An Arabidopsis brassinosteroid-dependent mutant is blocked in cell elongation[J]. Plant Cell, 1998, 10(2): 219-230. DOI: 10.1105/tpc.10.2.219.
[25]
CATTEROU M, DUBOIS F, SCHALLER H, et al. Brassinosteroids, microtubules and cell elongation in Arabidopsis thaliana Ⅱ. Effects of brassinosteroids on microtubules and cell elongation in the bul1 mutant[J]. Planta, 2001, 212(5/6): 673-683. DOI: 10.1007/s004250000467.
[26]
GAUDINOVÁ A, SÜSSENBEKOVÁ H, VOJTĚCHOVÁ M, et al. Different effects of two brassinosteroids on growth, auxin and cytokinin content in tobacco callus tissue[J]. Plant Growth Regul, 1995, 17(2): 121-126. DOI: 10.1007/BF00024171.
[27]
李启程, 余学军. 外源油菜素内酯对毛竹实生苗生理特性的影响[J]. 浙江农林大学学报, 2021, 38(1)120-127.
LI Q C, YU X J. Effects of exogenous BR on physiological characteristics of Phyllostachys edulis seedlings[J]. J Zhejiang A&F Univ, 2021, 38(1)120-127. DOI: 10.11833/j.issn.2095-0756.20200161.
[28]
LU Z, HUANG M, GE D P, et al. Effect of brassinolide on callus growth and regeneration in Spartina patens (Poaceae)[J]. 2003, 73: 87-89. DOI:1023/A:102266521011.
[29]
EMES M J, BOWSHER C G, HEDLEY C, et al. Starch synthesis and carbon partitioning in developing endosperm[J]. J Exp Bot, 2003, 54(382):569-575. DOI: 10.1093/jxb/erg089.
[30]
石新新, 李佐同, 杨克军, 等. 表油菜素内酯对高粱幼苗生长和光合特性的影响[J]. 黑龙江八一农垦大学学报, 2015, 27(5):56-60.
SHI X X, LI Z T, YANG K J, et al. Effects of EBR on growth and photosynthetic system on Sorghum seedlings[J]. J Heilongjiang August First Land Reclam Univ, 2015, 27(5): 56-60. DOI: 10.3969/j.issn.1002-2090.2015.05.013.
[31]
BRAUN P, WILD A. The influence of brassinosteroid on growth and parameters of photosynthesis of wheat and mustard plants[J]. J Plant Physiol, 1984, 116(3): 189-196.DOI: 10.1016/S0176-1617(84)80088-7.
[32]
郝建军, 玄美淑, 何若韫. 油菜素内酯对玉米幼苗光合速率与呼吸速率的影响[J]. 沈阳农业大学学报, 1990, 21(1): 43-47.
HAO J J, XUAN M S, HE R W. Effects of brassinolide (BR) on the rate of photosynthesis and respiration in maize seedlings[J]. J Shenyang Agric Univ, 1990, 21(1): 43-47.
[33]
尚玉磊, 李春喜, 邵云, 等. 禾本科主要作物生育初期内源激素动态及其作用的比较[J]. 华北农学报, 2004(4):47-50.
SHANG Y L, LI C X, SHAO Y, et al. Comparison of dynamics and functions of endogenous IAA, CTK content among main crops of Gramineae at early growing stage[J]. Acta Agric Boreali Sin, 2004, 19(4): 47-50. DOI: 10.3321/j.issn:1000-7091.2004.04.013.
[34]
NEMHAUSER J L, HONG F, CHORY J. Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses[J]. Cell, 2006, 126(3): 467-475. DOI: 10.1016/j.cell.2006.05.050.
[35]
王鑫, 刘丹, 陈婧婷, 等. 外源BR对盐碱胁迫下甜菜内源激素含量及保护酶活性的影响[J]. 西北农林科技大学学报(自然科学版), 2021, 49(7):20-30, 41.
WANG X, LIU D, CHEN J T, et al. Effects of exogenous BR on endogenous hormone and protective enzyme activities in sugar beet under saline-alkali stress[J]. J Northwest A & F Univ (Nat Sci Ed), 2021, 49(7)20-30, 41. DOI: 10.13207/j.cnki.jnwafu.2021.07.003.
[36]
TONG H N, XIAO Y H, LIU D P, et al. Brassinosteroid regulates cell elongation by modulating gibberellin metabolism in rice[J]. Plant Cell, 2014, 26(11): 4376-4393. DOI: 10.1105/tpc.114.132092.
[37]
UNTERHOLZNER S J, ROZHON W, PAPACEK M, et al. Brassinosteroids are master regulators of gibberellin biosynthesis in Arabidopsis[J]. Plant Cell, 2015, 27(8): 2261-2272. DOI: 10.1105/tpc.15.00433.
[38]
贾承国. 番茄中茉莉酸与其他激素信号的相互作用研究[D]. 杭州: 浙江大学, 2009.
JIA C G. Study on the interaction between jasmonic acid and other hormone signals in tomato[D]. Hangzhou: Zhejiang University, 2009.
[39]
HE Y Q, HONG G J, ZHANG H H, et al. The OsGSK2 kinase integrates brassinosteroid and jasmonic acid signaling by interacting with OsJAZ4[J]. Plant Cell, 2020, 32(9): 2806-2822. DOI: 10.1105/tpc.19.00499.
[40]
郑文光, 耿宇, 李常保, 等. 茉莉酸信号转导突变体ber15的分离和基因克隆表明油菜素内酯的合成影响茉莉酸信号转导[J]. 植物学通报, 2006(5): 603-610.
ZHENG W G, GENG Y, LI C B, et al. Characterization of jasmonic acid response mutant ber15 demonstrates cross talk between jasmonic acid and brassinosteriod signaling[J]. Chin Bull Bot, 2006(5): 603-610.
PDF(1459 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/