JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2023, Vol. 47 ›› Issue (4): 81-87.doi: 10.12302/j.issn.1000-2006.202109026
Special Issue: 乡村振兴视域下经济林果培育专题(Ⅱ)
Previous Articles Next Articles
WANG Mengke(), YANG Xiaoming(
), WANG Guibin, ZHOU Tinging, GUO Ying, GUO Jing
Received:
2021-09-12
Revised:
2022-02-24
Online:
2023-07-30
Published:
2023-07-20
CLC Number:
WANG Mengke, YANG Xiaoming, WANG Guibin, ZHOU Tinging, GUO Ying, GUO Jing. Effects of external 24-epibrassinolide (EBR) application on the development and physiological characteristics of Ginkgo biloba leaves[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(4): 81-87.
Table 1
Ginkgo seedling growth under different concentrations of EBR"
处理 treatment | 苗高/cm seedling height | 地径/cm ground diameter | 叶长/cm leaf length | 叶宽/cm leaf width | 叶面积/cm2 leaf area | 叶厚/mm leaf thickness | 根冠比 root to shoot ratio |
---|---|---|---|---|---|---|---|
CK | 5.64±0.29 c | 3.90±0.17 a | 6.35±0.37 b | 5.07±0.28 a | 11.73±0.94 b | 0.38±0.30 a | 0.21±0.03 a |
EBR1 | 9.54±0.35 b | 3.99±0.16 a | 7.15±0.08 ab | 5.39±0.04 a | 13.68±0.36 b | 0.40±0.01 a | 0.17±0.02 a |
EBR2 | 13.55±0.60 a | 4.24±0.11 a | 7.85±0.77 a | 5.86±0.57 a | 17.90±1.74 a | 0.42±0.00 a | 0.15±0.01 a |
EBR3 | 8.90±0.42 b | 3.82±0.11 a | 7.45±0.13 ab | 6.01±0.21 a | 15.35±1.05 ab | 0.41±0.02 a | 0.17±0.01 a |
EBR4 | 9.80±0.53 b | 4.13±0.17 a | 6.84±0.25 ab | 5.74±0.09 a | 14.16±1.01 b | 0.39±0.00 a | 0.19±0.02 a |
Table 2
"
处理 treatment | 叶 leaf | 茎 stem | 根 root | 合计 total |
---|---|---|---|---|
CK | 2.27±0.00 e | 0.57±0.06 a | 0.59±0.08 a | 3.43±0.1 d |
EBR1 | 2.61±0.00 d | 0.70±0.08 a | 0.57±0.09 a | 3.88±0.16 c |
EBR2 | 4.26±0.00 a | 0.77±0.07 a | 0.78±0.08 a | 5.80±0.14 a |
EBR3 | 2.92±0.00 c | 0.71±0.05 a | 0.62±0.04 a | 4.25±0.07 c |
EBR4 | 3.24±0.00 b | 0.80±0.11 a | 0.79±0.10 a | 4.84±0.20 b |
Table 3
Effects of exogenous EBR on photosynthesis of ginkgo seedlings"
处理 treatment | 胞间CO2浓度/ (μmol·mol-1) Ci | 净光合速率/ (μmol·m-2·s-1) Pn | 气孔导度/ (mmol·m-2·s-1) Gs | 蒸腾速率/ (mmol·m-2·s-1) Tr | 饱和水汽压差/ kPa VPD | 水分利用效率/ (μmol·mol-1) WUE |
---|---|---|---|---|---|---|
CK | 420.33±10.27 a | 3.73±0.29 b | 36.33±1.20 c | 1.10±0.06 b | 3.07±0.03 a | 3.33±0.32 a |
EBR1 | 437.17±20.70 a | 4.30±0.46 ab | 49.00±4.68 bc | 1.43±0.12 ab | 2.98±0.07 a | 3.07±0.95 a |
EBR2 | 415.83±16.58 a | 3.63±0.33 b | 45.33±4.10 c | 1.33±0.11 b | 2.98±0.06 a | 2.78±0.75 a |
EBR3 | 439.40±5.54 a | 5.42±0.40 a | 65.40±6.59 ab | 1.84±0.13 a | 2.86±0.07 a | 2.98±0.24 a |
EBR4 | 468.25±4.59 a | 5.50±0.44 a | 78.50±8.02 a | 1.88±0.28 a | 2.43±0.14 b | 3.03±0.50 a |
Table 4
The effects of exogenous EBR on the chlorophyll of ginkgo seedling leaves"
处理 treatment | 含量/(mg·g-1) content | 叶绿素a/b chlorophyll a/b | 类胡萝卜素/ 总叶绿素 carotenoids/ chlorophyll | |||
---|---|---|---|---|---|---|
叶绿素a chlorophyll | 叶绿素b chlorophyll b | 总叶绿素 chlorophyll | 类胡萝卜素 carotenoids | |||
CK | 1.49±0.01 a | 0.58±0.02 a | 2.07±0.03 a | 0.27±0.00 a | 2.56±0.07 b | 0.11±0.00 a |
EBR1 | 1.48±0.04 a | 0.59±0.09 a | 2.06±0.13 a | 0.27±0.02 a | 2.60±0.3 b | 0.11±0.00 a |
EBR2 | 1.25±0.03 b | 0.37±0.01 b | 1.62±0.04 b | 0.26±0.00 a | 3.40±0.03 a | 0.08±0.00 b |
EBR3 | 1.47±0.01 a | 0.51±0.01 a | 1.98±0.02 a | 0.28±0.01 a | 2.90±0.06 ab | 0.10±0.00 a |
EBR4 | 1.50±0.01 a | 0.59±0.05 a | 2.08±0.06 a | 0.27±0.01 a | 2.57±0.18 b | 0.11±0.00 a |
Table 5
"
处理 treatment | 赤霉素 GA3 | 脱落酸 ABA | 玉米素 ZR | 茉莉酸 JAMe | 生长素 IAA | 油菜素内酯 BR | 双氢玉米素 DHZR | 吲哚丙酸 IPA | 赤霉素 GA4 |
---|---|---|---|---|---|---|---|---|---|
CK | 2.91±0.11 c | 74.48±1.14 b | 6.75±0.33 b | 24.92±0.84 a | 48.94±2.05 a | 7.77±0.30 a | 2.75±0.14 b | 8.73±0.21 b | 5.49±0.24 b |
EBR1 | 3.57±0.16 b | 93.83±3.05 a | 9.05±0.43 a | 20.39±0.80 b | 50.06±1.92 a | 7.05±0.16 b | 2.95±0.14 b | 8.56±0.48 b | 6.03±0.30 b |
EBR2 | 3.51±0.05 b | 67.43±2.80 b | 7.86±0.39 ab | 16.83±0.45 c | 50.13±1.20 a | 6.78±0.19 b | 2.51±0.12 b | 8.14±0.13 b | 5.91±0.21 b |
EBR3 | 3.96±0.11 a | 94.29±2.39 a | 6.76±0.37 b | 22.93±1.05 a | 35.51±1.43 b | 7.77±0.02 a | 4.10±0.15 a | 10.64±0.34 a | 8.39±0.31 a |
EBR4 | 2.96±0.09 c | 72.65±3.22 b | 8.28±0.29 a | 16.00±0.61 c | 31.69±1.45 b | 7.18±0.24 ab | 2.82±0.12 b | 9.21±0.39 b | 6.03±0.23 b |
Table 6
The effects of exogenous EBR on the content of endogenous hormones in ginkgo leaves"
激素种类 hormones | GA3 | ABA | ZR | JAMe | IAA | BR | DHZR | IPA |
---|---|---|---|---|---|---|---|---|
ABA | 0.549* | |||||||
ZR | 0.029 | 0.077 | ||||||
JAMe | 0.135 | 0.429 | -0.575* | |||||
IAA | 0.002 | -0.124 | 0.123 | 0.230 | ||||
BR | 0.008 | 0.325 | -0.749** | 0.739** | -0.212 | |||
DHZR | 0.616* | 0.693** | -0.320 | 0.437 | -0.478 | 0.478 | ||
IPA | 0.387 | 0.474 | -0.417 | 0.315 | -0.697** | 0.533* | 0.820** | |
GA4 | 0.705** | 0.559* | -0.345 | 0.199 | -0.480 | 0.380 | 0.779** | 0.713** |
[1] | 曹福亮. 中国银杏志[M]. 北京: 中国林业出版社, 2007:1-3. |
CAO F L. Chinese Ginkgo biloba[M]. Beijing: China Forestry Publishing House, 2007:1-3. | |
[2] | HEISS C, KEEN C L, KELM M. Flavanols and cardiovascular disease prevention[J]. Eur Heart J, 2010, 31(21): 2583-2592. DOI: 10.1093/eurheartj/ehq332. |
[3] | 却枫, 查若飞, 魏强. 植物纤维素合成酶研究进展[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 207-214. |
QUE F, ZHA R F, WEI Q. Advances in research of cellulose synthase genes in plants[J]. J Nanjing For Univ (Nat Sci Ed), 2022, 46(6): 207-214.DOI: 10.12302/j.issn.1000-2006.202105039. | |
[4] | 李不凡. 油菜素甾醇调控甘蓝型油菜生长发育的机制及研究激素处理影响胚珠发育的简易方法[D]. 上海: 上海交通大学, 2018. |
LI B F. Mechanism of brassica napus growth and development regulated by brassinosteroid and a simple method for hormone treatment affecting ovule development[D]. Shanghai: Shanghai Jiaotong University, 2018. | |
[5] | SONG L I, ZHOU X Y, LI L I, et al. Genome-wide analysis revealed the complex regulatory network of brassinosteroid effects in photomorphogenesis[J]. Molecular Plant, 2009, 2(4): 755-772. |
[6] | NOLAN T M, VUKASINOVIC N, LIU D, et al. Brassinosteroids: multidimensional regulators of plant growth, development, and stress responses[J]. The Plant Cell, 2020, 32(2): 295-318. |
[7] | 王灵燕. 油菜素内酯调控拟南芥黄化幼苗转绿的分子机制研究[D]. 济南: 山东大学, 2020. |
WANG L Y. Molecular mechanism of brassinolide regulating the greening of arabidopsis yellowing seedlings[D]. Ji'nan: Shandong University, 2020. | |
[8] | LI X, WEI J P, AHAMMED G J, et al. Brassinosteroids attenuate moderate high temperature-caused decline in tea quality by enhancing theanine biosynthesis in Camellia sinensis L.[J]. Front Plant Sci, 2018, 9: 1016.DOI: 10.3389/fpls.2018.01016. |
[9] | 张弦, 王志博, 聂雅婷, 等. 茉莉酸甲酯和油菜素内酯减轻苹果叶片光抑制的生理机制研究[J]. 西北农业学报, 2017, 26(6): 906-915. |
ZHANG X, WANG Z B, NIE Y T, et al. Alleviation of photoinhibition by methyl jasmornate and brassinolide under strong light in apple leaves[J]. Northwest Agricultural Journal, 2017, 26(6): 906-915. | |
[10] | 胡春红, 郭婕, 陈龙, 等. 防腐剂胁迫下外源芸苔素内酯对玉米幼苗生长及抗性的影响[J]. 2014, 40(2), 113-116. |
HU C H, GUO J, CHEN L, et al. Influence of exogenous brassinolide on the growth and resistance of maize seedling with preservative stress[J]. 2014, 40( 2), 113-116 DOI:10.13331/j.cnki.jhau.2014.02.001. | |
[11] | VERGARA A E, DÍAZ K, CARVAJAL R, et al. Exogenous applications of brassinosteroids improve color of Red Table Grape (Vitis vinifera L. cv. Redglobe) berries[J]. Front Plant Sci, 2018, 9: 363. |
[12] | 王小璐. 24-表油菜素内酯对猕猴桃果实冷藏品质的影响及其机理[D]. 西安: 西北大学, 2020. |
WANG X L. Effect of 24-epibrassinolide on the cold storage quality of kiwifruit and its mechanism[D]. Xi'an: Northwest University, 2020. | |
[13] | ZHAO M, YUAN L, WANG J, et al. Transcriptome analysis reveals a positive effect of brassinosteroids on the photosynthetic capacity of wucai under low temperature[J]. BMC Genomics, 2019, 20(1): 810. |
[14] | ZHENG L, MA J, ZHANG L, et al. Revealing critical mechanisms of BR-mediated apple nursery tree growth using iTRAQ-based proteomic analysis[J]. Journal of Proteomics, 2018, 173: 139-154. |
[15] | GUO Y, GAO C Y, WANG M K, et al. Metabolome and transcriptome analyses reveal flavonoids biosynthesis differences in Ginkgo biloba associated with environmental conditions[J]. Ind Crops Prod, 2020, 158:112963. DOI: 10.1016/j.indcrop.2020.112963. |
[16] | 钱龙梁, 薛源, 曹福亮, 等. 生物遮阴对银杏幼苗生长的影响[J]. 中南林业科技大学学报, 2018, 38(10):21-26. |
QIAN L L, XUE Y, CAO F L, et al. Effects of biological shading on growth of ginkgo seedlings[J]. J Central South Univ For Technol, 2018, 38(10):21-26. DOI: 10.14067/j.cnki.1673-923x.2018.10.004. | |
[17] | ZHAO J, LI G, YI G X, et al. Comparison between conventional indirect competitive enzyme-linked immunosorbent assay (icELISA) and simplified icELISA for small molecules[J]. Anal Chimica Acta, 2006, 571(1): 79-85. DOI: 10.1016/j.aca.2006.04.060. |
[18] | YANG J, ZHANG J, WANG Z, et al. Hormonal changes in the grains of rice subjected to water stress during grain filling[J]. Plant Physiol, 2001, 127(1): 315-323. DOI: 10.1104/pp.127.1.315. |
[19] | YANG Y M, XU C N, WANG B M, et al. Effects of plant growth regulators on secondary wall thickening of cotton fibres[J]. Plant Growth Regul, 2001, 35(3): 233-237. DOI: 10.1023/A:1014442015872. |
[20] | 王鼎豪, 刘宇, 国颖, 等. 外源激素对银杏叶中黄酮类化合物积累的影响[J]. 经济林研究, 2020, 38(2): 123-130. |
WANG D H, LIU Y, GUO Y, et al. Effects of exogenous hormones on accumulation of flavonoids in Ginkgo biloba leaves[J]. Nonwood For Res, 2020, 38(2): 123-130. DOI: 10.14067/j.cnki.1003-8981.2020.02.015. | |
[21] | CHOE S. Brassinosteroid biosynthesis and inactivation[J]. Physiol Plant, 2006, 126(4): 539-548. DOI: 10.1111/j.1399-3054.2006.00681.x. |
[22] | KHRIPACH V, ZHABINSKII V, DE GROOT A. Twenty years of brassinosteroids: steroidal plant hormones warrant better crops for the XXI century[J]. Ann Bot, 2000, 86(3): 441-447. DOI: 10.1006/anbo.2000.1227. |
[23] | 郑洁, 王磊. 油菜素内酯在植物生长发育中的作用机制研究进展[J]. 中国农业科技导报, 2014, 16(1):52-58. |
ZHENG J, WANG L. Advance in mechanism of brassinosteroids in plant development[J]. J Agric Sci Technol, 2014, 16(1): 52-58. | |
[24] | AZPIROZ R, WU Y, LOCASCIO J C, et al. An Arabidopsis brassinosteroid-dependent mutant is blocked in cell elongation[J]. Plant Cell, 1998, 10(2): 219-230. DOI: 10.1105/tpc.10.2.219. |
[25] | CATTEROU M, DUBOIS F, SCHALLER H, et al. Brassinosteroids, microtubules and cell elongation in Arabidopsis thaliana Ⅱ. Effects of brassinosteroids on microtubules and cell elongation in the bul1 mutant[J]. Planta, 2001, 212(5/6): 673-683. DOI: 10.1007/s004250000467. |
[26] | GAUDINOVÁ A, SÜSSENBEKOVÁ H, VOJTĚCHOVÁ M, et al. Different effects of two brassinosteroids on growth, auxin and cytokinin content in tobacco callus tissue[J]. Plant Growth Regul, 1995, 17(2): 121-126. DOI: 10.1007/BF00024171. |
[27] | 李启程, 余学军. 外源油菜素内酯对毛竹实生苗生理特性的影响[J]. 浙江农林大学学报, 2021, 38(1)120-127. |
LI Q C, YU X J. Effects of exogenous BR on physiological characteristics of Phyllostachys edulis seedlings[J]. J Zhejiang A&F Univ, 2021, 38(1)120-127. DOI: 10.11833/j.issn.2095-0756.20200161. | |
[28] | LU Z, HUANG M, GE D P, et al. Effect of brassinolide on callus growth and regeneration in Spartina patens (Poaceae)[J]. 2003, 73: 87-89. DOI:1023/A:102266521011. |
[29] | EMES M J, BOWSHER C G, HEDLEY C, et al. Starch synthesis and carbon partitioning in developing endosperm[J]. J Exp Bot, 2003, 54(382):569-575. DOI: 10.1093/jxb/erg089. |
[30] | 石新新, 李佐同, 杨克军, 等. 表油菜素内酯对高粱幼苗生长和光合特性的影响[J]. 黑龙江八一农垦大学学报, 2015, 27(5):56-60. |
SHI X X, LI Z T, YANG K J, et al. Effects of EBR on growth and photosynthetic system on Sorghum seedlings[J]. J Heilongjiang August First Land Reclam Univ, 2015, 27(5): 56-60. DOI: 10.3969/j.issn.1002-2090.2015.05.013. | |
[31] | BRAUN P, WILD A. The influence of brassinosteroid on growth and parameters of photosynthesis of wheat and mustard plants[J]. J Plant Physiol, 1984, 116(3): 189-196.DOI: 10.1016/S0176-1617(84)80088-7. |
[32] | 郝建军, 玄美淑, 何若韫. 油菜素内酯对玉米幼苗光合速率与呼吸速率的影响[J]. 沈阳农业大学学报, 1990, 21(1): 43-47. |
HAO J J, XUAN M S, HE R W. Effects of brassinolide (BR) on the rate of photosynthesis and respiration in maize seedlings[J]. J Shenyang Agric Univ, 1990, 21(1): 43-47. | |
[33] | 尚玉磊, 李春喜, 邵云, 等. 禾本科主要作物生育初期内源激素动态及其作用的比较[J]. 华北农学报, 2004(4):47-50. |
SHANG Y L, LI C X, SHAO Y, et al. Comparison of dynamics and functions of endogenous IAA, CTK content among main crops of Gramineae at early growing stage[J]. Acta Agric Boreali Sin, 2004, 19(4): 47-50. DOI: 10.3321/j.issn:1000-7091.2004.04.013. | |
[34] | NEMHAUSER J L, HONG F, CHORY J. Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses[J]. Cell, 2006, 126(3): 467-475. DOI: 10.1016/j.cell.2006.05.050. |
[35] | 王鑫, 刘丹, 陈婧婷, 等. 外源BR对盐碱胁迫下甜菜内源激素含量及保护酶活性的影响[J]. 西北农林科技大学学报(自然科学版), 2021, 49(7):20-30, 41. |
WANG X, LIU D, CHEN J T, et al. Effects of exogenous BR on endogenous hormone and protective enzyme activities in sugar beet under saline-alkali stress[J]. J Northwest A & F Univ (Nat Sci Ed), 2021, 49(7)20-30, 41. DOI: 10.13207/j.cnki.jnwafu.2021.07.003. | |
[36] | TONG H N, XIAO Y H, LIU D P, et al. Brassinosteroid regulates cell elongation by modulating gibberellin metabolism in rice[J]. Plant Cell, 2014, 26(11): 4376-4393. DOI: 10.1105/tpc.114.132092. |
[37] | UNTERHOLZNER S J, ROZHON W, PAPACEK M, et al. Brassinosteroids are master regulators of gibberellin biosynthesis in Arabidopsis[J]. Plant Cell, 2015, 27(8): 2261-2272. DOI: 10.1105/tpc.15.00433. |
[38] | 贾承国. 番茄中茉莉酸与其他激素信号的相互作用研究[D]. 杭州: 浙江大学, 2009. |
JIA C G. Study on the interaction between jasmonic acid and other hormone signals in tomato[D]. Hangzhou: Zhejiang University, 2009. | |
[39] | HE Y Q, HONG G J, ZHANG H H, et al. The OsGSK2 kinase integrates brassinosteroid and jasmonic acid signaling by interacting with OsJAZ4[J]. Plant Cell, 2020, 32(9): 2806-2822. DOI: 10.1105/tpc.19.00499. |
[40] | 郑文光, 耿宇, 李常保, 等. 茉莉酸信号转导突变体ber15的分离和基因克隆表明油菜素内酯的合成影响茉莉酸信号转导[J]. 植物学通报, 2006(5): 603-610. |
ZHENG W G, GENG Y, LI C B, et al. Characterization of jasmonic acid response mutant ber15 demonstrates cross talk between jasmonic acid and brassinosteriod signaling[J]. Chin Bull Bot, 2006(5): 603-610. |
[1] | WANG Mengke, GUO Ying, WANG Guibin, YUAN Ke, YANG Xiaoming, GUO Jing. Effects of habitat on the synthesis and accumulation of primary metabolites in Ginkgo biloba leaves [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(1): 121-128. |
[2] | LIANG Wenchao, BU Xing, LUO Siqian, XIE Yinfeng, ZHANG Wangxiang, HU Jialin. Effects of nitrogen, phosphorus and potassium compound fertilization on the physiological characteristics of Chaenomeles speciosa ‘Changshouguan’ after processing of warming in the post floral stage [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(5): 81-88. |
[3] | ZHANG Jiling, LI Mingyang, LI Yong, LIU Li, FEI Yuchong, CAO Guangqiu. Effects of mechanical damage treatment on the tillering ability and endogenous hormone content of Chinese fir clones [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(2): 153-158. |
[4] | LONG Wei, YAO Xiaohua, LYU Leyan, WANG Kailiang. An analysis of seed traits and endogenous hormone levels after seed soakings in Camellia oleifera [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(5): 148-156. |
[5] | CUI Lingjun, LIU Yuxia, LIN Jian, SHI Kaiming. Effects of arbuscular mycorrhizal fungi on roots growth and endogenous hormones of Phoebe zhennan under salt stress [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(4): 119-124. |
[6] | JIANG Nannan, ZHANG Qixiang, WANG Yuan, SUN Yin, FANG Yifu, XU Jinguang. Effects of GA3 on dormancy release, endogenous hormones levels and sugar metabolism in Paeonia lactiflora ‘Da Fugui’ [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(3): 26-32. |
[7] | ZHANG Ning, HUANG Yaoyao, AO Yan, SU Shuchai, LIU Jinfeng, ZHANG Xingjie, LIU Juefei. Flower bud differentiation and dynamic changes of endogenous hormone in Xanthoceras sorbifolium Bunge [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2019, 43(04): 33-42. |
[8] | YUAN Changhong, HAN Dong,YANG Fei,YANG Zaiqiang . Effects of nitrogen fertilization level in soil on physiological characteristics and quality of tea leaves [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2016, 40(05): 67-73. |
[9] | WU Wenhao, CAO Fan, LIU Zhuangzhuang, PENG Fangren, LIANG Youwang, TAN Pengpeng. Effects of NAA treatment on the endogenous hormone changes in cuttings of Carya illinoinensis during rooting [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2016, 40(05): 191-196. |
[10] | CAI Junhuo,WEI Xuying,ZHANG Lu*. Effects of bulb storage on flowering, leaf traits, and endogenous hormones of Lycoris radiata [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2012, 36(05): 56-60. |
[11] | YANG Xiulian,WANG Lianggui. The physiological and biochemical responses of sweet osmanthusseeds to gibberellic acid treatment [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2012, 36(01): 63-67. |
[12] | XU Xiaogang1, DING Jungang2, TONG Lili3. Changes of soluble proteins and content of endohormone in the process of striking roots of Malus prunifolia Borkh [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2009, 33(02): 60-. |
[13] | WANG Lei1,2, TANG Geng-guo2*, LIU Tong3. Variation of endogenous hormone and nucleic acid content during flower bud differentiation in Lycoris radiata [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2008, 32(04): 67-70. |
[14] | YE Jing-zhong. Review on the Study of Chinese Fir Sprout Regeneration [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2007, 31(02): 1-4. |
[15] | YANG Yu-zhen1,2, GUO Yan-qing1, PENG Fang-ren1*. The Dynamic Changes of Some Endogenous Hormones and Its Relation to Proteins Metabolization in Leaf and Cortex of Poplar [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2006, 30(06): 114-116. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||