
Inversion of forest aboveground biomass using combination of LiDAR and multispectral data
JU Yilin, JI Yongjie, HUANG Jimao, ZHANG Wangfei
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (1) : 58-68.
Inversion of forest aboveground biomass using combination of LiDAR and multispectral data
【Objective】 The accurate estimation of forest aboveground biomass is important to determine changes in global carbon reserves and the corresponding climate change in real time. Combining a variety of remote sensing data, feature optimization, and classification modeling is an effective means to improve the accuracy of estimating forest aboveground biomass.【Method】 In this study, the research object was defined as the temperate natural forest at the Daxinganling ecological observation station in Genhe City, China. Additionally, fifty-five ground survey data containing airborne light detection and ranging (LiDAR) and Landsat8 operational land imager (OLI) remote sensing imagery were utilized. The partial least squares algorithm was used to optimize the selected variables, and the model was constructed by linear multiple stepwise regression and constructed by the k-nearest neighbor algorithm (KNN-FIFS) for fast iterative feature selection; the forest aboveground biomass was retrieved under different combinations of the two data sources.【Result】 The inversion accuracy of the single LiDAR data based on linear multiple stepwise regression model had a R2 of 0.76, and a root mean squared error (RMSE) of 21.78 t/hm2. The inversion accuracy of the single Landsat8 OLI data had a R2 of 0.24, and a RMSE of 39.27 t/hm2. The accuracy of LiDAR and Landsat8 OLI combined inversion had a R2 of 0.84, and a RMSE of 18.16 t/hm2. The inversion accuracy of single LiDAR data based on the KNN-FIFS model had a R2 of 0.74, and a RMSE of 23.83 t/hm2. The inversion accuracy of the single Landsat8 OLI data had a R2 of 0.60, and a RMSE of 29.63 t/hm2. The accuracy of the LiDAR and Landsat8 OLI combined inversion had a R2 of 0.80, and a RMSE of 21.15 t/hm2.【Conclusion】 Among the three combination methods supported by feature optimization, the combination of LiDAR and Landsat8 OLI data demonstrated the highest inversion accuracy in both models. Among the models, the inversion accuracy of the linear multiple stepwise regression model was the highest, with a R2 of 0.84, and a RMSE of 18.16 t/hm2. This result indicates that the LiDAR and Landsat8 OLI data complement each other, and collaborative inversion can effectively improve the inversion accuracy of forest aboveground biomass. The inversion accuracy of forest aboveground biomass from a single data source using LiDAR data was higher than Landsat8 OLI data of the two models; this was related to the high spatial resolution of LiDAR data and the availability of vertical structure parameters.
airborne light detection and ranging (LiDAR) / Landsat8 OLI / forest aboveground biomass / partial least squares / linear multiple stepwise regression / k-nearest neighbor with fast iterative features selection (KNN-FIFS)
[1] |
马学威, 熊康宁, 张俞, 等. 森林生态系统碳储量研究进展与展望[J]. 西北林学院学报, 2019, 34(5):62-72.
|
[2] |
李海奎, 雷渊才. 中国森林植被生物量和碳储量评估[M]. 北京: 中国林业出版社, 2010.
|
[3] |
郭云, 李增元, 陈尔学, 等. 甘肃黑河流域上游森林地上生物量的多光谱遥感估测[J]. 林业科学, 2015, 51(1):140-149.
|
[4] |
罗洪斌, 舒清态, 王强, 等. 运用机载激光雷达和陆地卫星数据对橡胶林地上生物量的估测[J]. 东北林业大学学报, 2019, 47(7):56-61.
|
[5] |
李特. 基于机载LiDAR与Landsat-5遥感数据的森林地上生物量反演研究[D]. 北京:中国地质大学(北京), 2019.
|
[6] |
|
[7] |
吴娇娇, 张亚红, 杨凯博, 等. 机载激光雷达在林业中的应用[J]. 安徽农业科学, 2016, 44(35):209-212.
|
[8] |
|
[9] |
徐婷, 曹林, 申鑫, 等. 基于机载激光雷达与Landsat 8 OLI数据的亚热带森林生物量估算[J]. 植物生态学报, 2015, 39(4):309-321.
快速、定量、精确地估算区域森林生物量一直是森林生态功能评价以及碳储量研究的重要问题。该研究基于机载激光雷达(LiDAR)点云与Landsat 8 OLI多光谱数据, 借助江苏省常熟市虞山地区55块调查样地数据, 首先提取并分析了87个特征变量(53个OLI特征变量, 34个LiDAR特征变量)与森林地上、地下生物量的Pearson’s相关系数以进行变量优选, 然后利用多元逐步回归法建立森林生物量估算模型(OLI生物量估算模型和LiDAR生物量估算模型), 并与基于两种数据建立的综合生物量估算模型的结果进行比较, 讨论预测结果及其精确性。结果表明: 3种模型(OLI模型、LiDAR模型和综合模型)在所有样地无区分分析时, 地上和地下生物量的估算精度均达到0.4以上, 基于不同森林类型(针叶林、阔叶林、混交林)分析时地上和地下生物量的估算精度均有明显提高, 达到0.67及以上。利用分森林类型模型估算生物量, 综合生物量估算模型精度(地上生物量: R<sup>2</sup>为0.88; 地下生物量: R<sup>2</sup>为0.92)优于OLI生物量估算模型(地上生物量: R<sup>2</sup>为0.73; 地下生物量: R<sup>2</sup>为0.81)和LiDAR生物量估算模型(地上生物量: R<sup>2</sup>为0.86; 地下生物量: R<sup>2</sup>为0.83)。
|
[10] |
卜帆. 基于多源遥感数据的森林地上生物量估算研究[D]. 南京:南京信息工程大学, 2019.
|
[11] |
韩宗涛. 基于特征优选的森林地上生物量遥感估测[D]. 福州:福州大学, 2017.
|
[12] |
韩宗涛, 江洪, 王威, 等. 基于多源遥感的森林地上生物量KNN-FIFS估测[J]. 林业科学, 2018, 54(9):70-79.
|
[13] |
张少伟, 惠刚盈, 韩宗涛, 等. 基于光学多光谱与SAR遥感特征快速优化的大区域森林地上生物量估测[J]. 遥感技术与应用, 2019, 34(5):925-938.
|
[14] |
穆喜云. 森林地上生物量遥感估测方法研究[D]. 呼和浩特:内蒙古农业大学, 2015.
|
[15] |
陈传国, 朱俊凤. 东北主要林木生物量手册[M]. 北京: 中国林业出版社, 1989.
|
[16] |
|
[17] |
秦浩, 林志娟, 陈景武. 偏最小二乘回归原理、分析步骤及程序[J]. 数理医药学杂志, 2007, 20(4):450-451.
|
[18] |
|
[19] |
许振宇, 李盈昌, 李明阳, 等. 基于Sentinel-1A和Landsat 8数据的区域森林生物量反演[J]. 中南林业科技大学学报, 2020, 40(11):147-155.
|
[20] |
李云, 张王菲, 崔鋆波, 等. 参数优选支持的光学与SAR数据森林地上生物量反演研究[J]. 北京林业大学学报, 2020, 42(10):11-19.
|
[21] |
庞勇, 李增元. 基于机载激光雷达的小兴安岭温带森林组分生物量反演[J]. 植物生态学报, 2012, 36(10):1095-1105.
|
[22] |
|
[23] |
胡凯龙, 刘清旺, 李世明, 等. 运用融合纹理和机载LiDAR特征模型估测森林地上生物量[J]. 东北林业大学学报, 2018, 46(1):52-57.
|
/
〈 |
|
〉 |