JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (1): 58-68.doi: 10.12302/j.issn.1000-2006.202109029
Special Issue: 第二届中国林草计算机大会论文精选
Previous Articles Next Articles
JU Yilin1(), JI Yongjie2,*(), HUANG Jimao2, ZHANG Wangfei1
Received:
2021-09-15
Accepted:
2021-11-28
Online:
2022-01-30
Published:
2022-02-09
Contact:
JI Yongjie
E-mail:juyilina@163.com;jiyongjie@live.cn
CLC Number:
JU Yilin, JI Yongjie, HUANG Jimao, ZHANG Wangfei. Inversion of forest aboveground biomass using combination of LiDAR and multispectral data[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(1): 58-68.
Table 1
Landsat8 OLI operational land imager parameters"
波段号 band No. | 波段 band | 频谱范围/μm spectrum range | 分辨率/m resolution ratio |
---|---|---|---|
B1 | Coastal | 0.43~0.45 | 30 |
B2 | Blue | 0.45~0.51 | 30 |
B3 | Green | 0.53~0.59 | 30 |
B4 | Red | 0.64~0.67 | 30 |
B5 | NIR | 0.85~0.88 | 30 |
B6 | SWIR1 | 1.57~1.65 | 30 |
B7 | SWIR2 | 2.11~2.29 | 30 |
B8 | Pan | 0.50~0.68 | 15 |
B9 | Cirrus | 1.36~1.39 | 30 |
Table 2
Summary of metrics computed from LiDAR&Landsat8 OLI multispectral data"
LiDAR | Landsat8 OLI | ||
---|---|---|---|
特征变量 characteristic variable | 变量符号 variable symbol | 特征变量 characteristic variable | 变量符号及计算公式 variable symbol and calculation formula |
最大高度maximum height | Hmax | 单波段因子single band factor | B1—B7 |
最小高度minimum height | Hmin | 归一化植被指数normalized difference vegetation index | INDVI =(B5-B4)/(B5+B4) |
平均高度mean height | Hmean | 差值植被指数difference vegetation index | IDVI =B5-B4 |
高度峰度height kurtosis | Hkurt | 比值植被指数ratio vegetation index | IRVI =B5/B4 |
高度偏斜度height skewness | Hskew | 土壤调节植被指数soil-adjusted vegetation index | ISAVI =[(B5-B4)/ (B5+B4+L)](1+L) |
高度标准差 height standard deviation | Hstd | 增强植被指数enhanced vegetation index | IEVI =2.5×(B5-B4/B5+6B4-7.5B2+1) |
高度方差height variance | Hvar | 有效叶面积指数specific leaf area vegetation index | ISLAVI =B5/B4+B7 |
冠层密度变量 canopy density variable | d0、d1、d2、d3、d4、 d5、d6、d7、d8、d9 | 第1、2、3主成分 first, second and third principal components | PCa1、PCa2、PCa3 |
高度分位数 height quantile | 纹理因子texture factor | Me、Var、Con、En Homo、Dis、Sec、Cor | |
H1th、H5th、 | 地表反照率RAlbedo | RAlbedo=B2+B3+B4+B5+B6+B7 | |
H10th、H20th、 | B4/RAlbedo | B4/RAlbedo=B4/ (B2+B3+B4+B5+B6+B7) | |
H25th、H30th、 | B24 | B24=B2/B4 | |
H40th、H50th、 | B53 | B53=B5/B3 | |
H60th、H70th、 | B65 | B65=B6/B5 | |
H75th、H80th、 | B74 | B74=B7/B4 | |
H90th、H95th、 | B76 | B76=B7/B6 | |
H99th | B345 | B345=B3×B4/B5 | |
B547 | B547=B5×B4/B7 | ||
VIS234 | VIS234=B2+B3+B4 |
Table 5
Model evaluation results"
反演模型 inversion model | 数据源 data source | 拟合结果 fitting results | |||
---|---|---|---|---|---|
R2 | σ (RMSE)/ (t·hm-2) | σ (RMSEr)/ % | |||
逐步回归 stepwise regression | LiDAR | 0.76 | 21.78 | 28.65 | |
Landsat8 OLI | 0.24 | 39.27 | 51.67 | ||
LiDAR & Landsat8 OLI | 0.84 | 18.16 | 23.89 | ||
KNN-FIFS | LiDAR | 0.74 | 23.83 | 30.22 | |
Landsat8 OLI | 0.60 | 29.63 | 36.25 | ||
LiDAR & Landsat8 OLI | 0.80 | 21.15 | 26.25 |
[1] | 马学威, 熊康宁, 张俞, 等. 森林生态系统碳储量研究进展与展望[J]. 西北林学院学报, 2019, 34(5):62-72. |
MA X W, XIONG K N, ZHANG Y, et al. Research progresses and prospects of carbon storage in forest ecosystems[J]. J Northwest For Univ, 2019, 34(5):62-72.DOI: 10.3969/j.issn.1001-7461.2019.05.10.
doi: 10.3969/j.issn.1001-7461.2019.05.10 |
|
[2] | 李海奎, 雷渊才. 中国森林植被生物量和碳储量评估[M]. 北京: 中国林业出版社, 2010. |
LI H K, LEI Y C. Estimation and evaluation of forest biomass carbon storage in China[M]. Beijing: China Forestry Publishing House, 2010. | |
[3] | 郭云, 李增元, 陈尔学, 等. 甘肃黑河流域上游森林地上生物量的多光谱遥感估测[J]. 林业科学, 2015, 51(1):140-149. |
GUO Y, LI Z Y, CHEN E X, et al. Estimating forest above-ground biomass in the upper reaches of Heihe river basin using multi-spectral remote SensingChinese full text[J]. Sci Silvae Sin, 2015, 51(1):140-149. | |
[4] | 罗洪斌, 舒清态, 王强, 等. 运用机载激光雷达和陆地卫星数据对橡胶林地上生物量的估测[J]. 东北林业大学学报, 2019, 47(7):56-61. |
LUO H B, SHU Q T, WANG Q, et al. Estimation of above ground biomass of rubber forest with airborne Li DAR and Landsat8/OLI DataChinese full text[J]. J Northeast For Univ, 2019, 47(7):56-61.DOI: 10.13759/j.cnki.dlxb.2019.07.010.
doi: 10.13759/j.cnki.dlxb.2019.07.010 |
|
[5] | 李特. 基于机载LiDAR与Landsat-5遥感数据的森林地上生物量反演研究[D]. 北京:中国地质大学(北京), 2019. |
LI T. Inversion of forest aboveground biomass using airborne LiDAR and multispectral remote sensing data[D]. Beijing:China University of Geosciences, 2019. | |
[6] |
DUNCANSON L I, NIEMANN K O, WULDER M A. Integration of GLAS and Landsat TM data for aboveground biomass estimation[J]. Can J Remote Sens, 2010, 36(2):129-141.DOI: 10.5589/m10-037.
doi: 10.5589/m10-037 |
[7] | 吴娇娇, 张亚红, 杨凯博, 等. 机载激光雷达在林业中的应用[J]. 安徽农业科学, 2016, 44(35):209-212. |
WU J J, ZHANG Y H, YANG K B, et al. Application of airborn LiDAR in Forestry Chinese full TextEnglish full text (MT)[J]. J Anhui Agric Sci, 2016, 44(35):209-212.DOI: 10.13989/j.cnki.0517-6611.2016.35.072.
doi: 10.13989/j.cnki.0517-6611.2016.35.072 |
|
[8] |
POPESCU S C, WYNNE R H, SCRIVANI J A. Fusion of small-footprint lidar and multispectral data to estimate plot-level volume and biomass in deciduous and pine forests in Virginia,USA[J]. For Sci, 2004, 50(4):551-565.DOI: 10.1093/forestscience/50.4.551.
doi: 10.1093/forestscience/50.4.551 |
[9] |
徐婷, 曹林, 申鑫, 等. 基于机载激光雷达与Landsat 8 OLI数据的亚热带森林生物量估算[J]. 植物生态学报, 2015, 39(4):309-321.
doi: 10.17521/cjpe.2015.0030 |
XU T, CAO L, SHEN X, et al. Estimates of subtropical forest biomass based on airborne LiDAR and Landsat 8 OLI data[J]. Chin J Plant Ecol, 2015, 39(4):309-321.DOI: 10.17521/cjpe.2015.0030.
doi: 10.17521/cjpe.2015.0030 |
|
[10] | 卜帆. 基于多源遥感数据的森林地上生物量估算研究[D]. 南京:南京信息工程大学, 2019. |
BU F. Estimation of forest aboveground biomass based on multi-source remote sensing data[D]. Nanjing:Nanjing University of Information Science & Technology, 2019. | |
[11] | 韩宗涛. 基于特征优选的森林地上生物量遥感估测[D]. 福州:福州大学, 2017. |
HAN Z T. Forest above-ground biomass estimation using feature selection based on remote sensing data[D]. Fuzhou:Fuzhou University, 2017. | |
[12] | 韩宗涛, 江洪, 王威, 等. 基于多源遥感的森林地上生物量KNN-FIFS估测[J]. 林业科学, 2018, 54(9):70-79. |
HAN Z T, JIANG H, WANG W, et al. Forest above-ground biomass estimation using KNN-FIFS method based on multi-source remote sensing DataChinese full text[J]. Sci Silvae Sin, 2018, 54(9):70-79. | |
[13] | 张少伟, 惠刚盈, 韩宗涛, 等. 基于光学多光谱与SAR遥感特征快速优化的大区域森林地上生物量估测[J]. 遥感技术与应用, 2019, 34(5):925-938. |
ZHANG S W, HUI G Y, HAN Z T, et al. Estimation of Large-scale forest Above-ground biomass based on fast optimizing remotely sensed features from pptical Multi-spectral and sar data[J]. Remote Sens Technol Appl, 2019, 34(5):925-938.DOI: 10.11873/j.issn.1004-0323.2019.5.0925.
doi: 10.11873/j.issn.1004-0323.2019.5.0925 |
|
[14] | 穆喜云. 森林地上生物量遥感估测方法研究[D]. 呼和浩特:内蒙古农业大学, 2015. |
MU X Y. A study on the estimating method of forest above ground biomass based on remote sensing data[D]. Hohhot:Inner Mongolia Agricultural University, 2015. | |
[15] | 陈传国, 朱俊凤. 东北主要林木生物量手册[M]. 北京: 中国林业出版社, 1989. |
[16] |
NILSSON M. Estimation of tree heights and stand volume using an airborne lidar system[J]. Remote Sens Environ, 1996, 56(1):1-7.DOI: 10.1016/0034-4257(95)00224-3.
doi: 10.1016/0034-4257(95)00224-3 |
[17] | 秦浩, 林志娟, 陈景武. 偏最小二乘回归原理、分析步骤及程序[J]. 数理医药学杂志, 2007, 20(4):450-451. |
[18] | WOLD S . PLS for Multivariate linear modeling[M]// Chemometric methods in molecular design, Illinois: Elsevier Ltd, 1995. |
[19] | 许振宇, 李盈昌, 李明阳, 等. 基于Sentinel-1A和Landsat 8数据的区域森林生物量反演[J]. 中南林业科技大学学报, 2020, 40(11):147-155. |
XU Z Y, LI Y C, LI M Y, et al. Forest biomass retrieval based on Sentinel-1A and Landsat 8 image[J]. J Central South Univ For Technol, 2020, 40(11):147-155.DOI: 10.14067/j.cnki.1673-923x.2020.11.018.
doi: 10.14067/j.cnki.1673-923x.2020.11.018 |
|
[20] | 李云, 张王菲, 崔鋆波, 等. 参数优选支持的光学与SAR数据森林地上生物量反演研究[J]. 北京林业大学学报, 2020, 42(10):11-19. |
LI Y, ZHANG W F, CUI J B, et al. Inversion exploration on forest aboveground biomass of optical and SAR data supported by parameter optimization methodChinese Full Text[J]. J Beijing For Univ, 2020, 42(10):11-19. | |
[21] | 庞勇, 李增元. 基于机载激光雷达的小兴安岭温带森林组分生物量反演[J]. 植物生态学报, 2012, 36(10):1095-1105. |
PANG Y, LI Z Y. Inversion of biomass components of the temperate forest using airborne Lidar technology in Xiaoxing’an Mountains,Northeastern of China[J]. Chin J Plant Ecol, 2012, 36(10):1095-1105.DOI: 10.3724/SP.J.1258.2012.01095.
doi: 10.3724/SP.J.1258.2012.01095 |
|
[22] |
FOODY G M, BOYD D S, CUTLER M E J. Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions[J]. Remote Sens Environ, 2003, 85(4):463-474.DOI: 10.1016/S0034-4257(03)00039-7.
doi: 10.1016/S0034-4257(03)00039-7 |
[23] | 胡凯龙, 刘清旺, 李世明, 等. 运用融合纹理和机载LiDAR特征模型估测森林地上生物量[J]. 东北林业大学学报, 2018, 46(1):52-57. |
HU K L, LIU Q W, LI S M, et al. Estimation of forest aboveground biomass by fusion of optical image texture and airborne LiDAR MetricsChinese full text[J]. J Northeast For Univ, 2018, 46(1):52-57.DOI: 10.13759/j.cnki.dlxb.2018.01.010.
doi: 10.13759/j.cnki.dlxb.2018.01.010 |
[1] | ZHOU Youfeng, XIE Binglou, LI Mingshi. Mapping regional forest aboveground biomass from random forest Co-Kriging approach: a case study from north Guangdong [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(1): 169-178. |
[2] | XU Hui, YAO Xiazhen, TONG Keke, XING Zhen, LI Yao. Analysis of volatile components in different parts of flower organs of three species of tree peony [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(3): 63-69. |
[3] | SHI Tingting, YANG Xiulian, WANG Lianggui. Dynamic characteristics of floral components and anatomical observation of petals in three cultivars of Osmanthus fragrans [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(4): 12-20. |
[4] | YU Chao, SONG Liyi, LI Mingyang, Omidreza Shobairi SEYED, ZHANG Xiangyang. Spatio-temporal dynamics of forest aboveground biomass in Xixia County, Henan Province, China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2017, 41(06): 93-101. |
[5] | WANG Xiwei, ZHAO Maocheng, JU Ronghua. Extraction of the characteristic wavelengths of the spectral images acquired by electronically tunable filters [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2014, 38(02): 137-140. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||